Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e....Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e.,allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities.In this paper,the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence,space and resource constraints.Specifically,eight processing procedures are abstracted,where tractors,preparing spots,catapults,and launching are virtualized as machines.By analyzing the constraints in sortie scheduling,a mixed-integer planning model is constructed.In particular,the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency.The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue.To efficiently solve the formulated HFSP,which is essentially a combinatorial problem with tightly coupled constraints,a chaos-initialized genetic algorithm is developed.The solution framework is validated by the simulation environment referring to the Fort-class carrier,exhibiting higher sortie efficiency when compared to existing strategies.And animation of the simulation results is available at www.bilibili.com/video/BV14t421A7Tt/.The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future,and can be easily extended to other supporting scenarios,e.g.,ammunition delivery and aircraft maintenance.展开更多
Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investig...Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investigate the integrated scheduling of communication,sensing,and control for UAV-aided FSO communication systems.Initially,a sensing-control model is established via the control theory.Moreover,an FSO communication channel model is established by considering the effects of atmospheric loss,atmospheric turbulence,geometrical loss,and angle-of-arrival fluctuation.Then,the relationship between the motion control of the UAV and radial displacement is obtained to link the control aspect and communication aspect.Assuming that the base station has instantaneous channel state information(CSI)or statistical CSI,the thresholds of the sensing-control pattern activation are designed,respectively.Finally,an integrated scheduling scheme for performing communication,sensing,and control is proposed.Numerical results indicate that,compared with conventional time-triggered scheme,the proposed integrated scheduling scheme obtains comparable communication and control performance,but reduces the sensing consumed power by 52.46%.展开更多
A kind of automatic shift schedule optimization method is provided for a tracked vehicle with hydrodynamic-mechanical transmission in order to improve its dynamic performance. A dynamic model of integrated hydrodynami...A kind of automatic shift schedule optimization method is provided for a tracked vehicle with hydrodynamic-mechanical transmission in order to improve its dynamic performance. A dynamic model of integrated hydrodynamic-mechanical transmission is built in MATLAB/Simdriveline environment, and an optimum shift schedule is derived by using iSight software to call the dynamic model above, then the shift schedule is achieved after optimization. The simulation results show that the method is significant to improve the dynamic performance and gear-shifting smoothness theoretically and practically.展开更多
In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and r...In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.展开更多
The task of maintenance organization is very heavy at wartime.The usability of armaments may be greatly improved by efficient task scheduling.In order to recover the battle effectiveness of units in battlefield as fas...The task of maintenance organization is very heavy at wartime.The usability of armaments may be greatly improved by efficient task scheduling.In order to recover the battle effectiveness of units in battlefield as fast as possible,dynamic maintenance scheduling models with subject taken into account were built on the basis of analysis the feature of maintenance task.Maintenance task scheduling problem is very complicated.So it is decomposed into two sub-problems:static maintenance task scheduling and dynamic maintenance task scheduling problem with subject taken into account.Corresponding mathematic models were built to these sub-problems and their solutions were proposed.Dynamic maintenance task scheduling with subject taken into account is on the basis of static maintenance task scheduling.With the task changing in battlefield,dynamic task scheduling can be realized by repeatedly call of static maintenance task scheduling with subject taken into account.The experimented results show that dynamic maintenance task scheduling method with maintenance subject taken into account is valid.展开更多
When analyze the uncertainty of the cost and the schedule of the spaceflight project, it is needed to know the value of the schedule-cost correlation coefficient. This paper deduces the schedule distribution, consider...When analyze the uncertainty of the cost and the schedule of the spaceflight project, it is needed to know the value of the schedule-cost correlation coefficient. This paper deduces the schedule distribution, considering the effect of the cost, and proposes the estimation formula of the correlation coefficient between the in(schedule) and the cost. On the basis of the fact and Taylor expansion, the relation expression between the schedule-cost correlation coefficient and the in-schedule-cost correlation coefficient is put forward. By analyzing the value features of the estimation formula of the in-schedule-cost correlation coefficient, the general rules are proposed to ascertain the value of the schedule-cost correlation coefficient. An example is given to demonstrate how to approximately amend the schedule-cost correlation coefficient based on the historical statistics, which reveals the traditional assigned value is inaccurate. The universality of this estimation method is analyzed.展开更多
There has been a number of algorithms designed to handle intra-query or inter-query scheduling in multiprocessor-based parallel database system. They all have the assumption that the processorsare identical. But in so...There has been a number of algorithms designed to handle intra-query or inter-query scheduling in multiprocessor-based parallel database system. They all have the assumption that the processorsare identical. But in some cases, such as shared nothing environment, this assumption would not be fullyvalid. In this paper we devise and evaluate a scheduling algorithm ELLIST to handle nonprecedence-basedheterogeneous malleable scheduling problem. It uses LLIST-NM as subroutine that handles nonmalleablescheduling without precedence and assuming the processors are identical. Even though the problem we considered is NP-hard in the strong sense, the schedule generated by our algorithm is seen experimentally toachieve results that are close to optimum when there are enough tasks to be scheduled.展开更多
This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed appr...This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist.展开更多
在中长期水火发电调度中考虑检修计划的影响是目前中长期水火发电调度面临的难题。利用现代整数代数建模技术,建立发电计划和检修计划协调优化的多场景调度模型。在该模型中,鉴于设备检修计划的连续性,在预测场景树的基础上,将场景...在中长期水火发电调度中考虑检修计划的影响是目前中长期水火发电调度面临的难题。利用现代整数代数建模技术,建立发电计划和检修计划协调优化的多场景调度模型。在该模型中,鉴于设备检修计划的连续性,在预测场景树的基础上,将场景节点划分成不同的场景,通过节点和场景关联矩阵,实现多场景下设备检修模型的构建。同时,鉴于中长期调度计划中发电计划和检修计划对时段间隔要求的不同,分别设置电量相关节点和电力相关节点,实现中长期发电计划和检修计划的协调。上述模型是一个大规模混合整数线性规划(mixed integer linear programming,MILP)问题,采用商用MILP求解器进行求解。大规模实际水火电系统的实例分析结果表明,所提模型和方法是可行、有效的。展开更多
A field experiment was conducted to elucidate the regulation mechanism of different irrigation schedules on population photosynthetic of winter wheat. The experiment included five irrigation schedules, such as no irri...A field experiment was conducted to elucidate the regulation mechanism of different irrigation schedules on population photosynthetic of winter wheat. The experiment included five irrigation schedules, such as no irrigation (W0), irrigation once at jointing (W1j) or at booting (W1b), irrigation twice at jointing and booting (W2), and irrigation three times at jointing, booting and grain-filling (W3) and three planting densities, such as 180 (D1), 300 (D2) and 450 (D3) seedlings per square meter. The results indicated that irrigation significantly improved population photosynthesis. The relationship between population photosynthesis and irrigation time/volume was to some extent parabolic. Improvements in population photosynthesis (resulting from more irrigation time/volume) were mainly related to increase in leaf area index and population light interception. Population photosynthesis exhibited a significantly negative correlation with canopy light transmittance. Population photosynthesis at grain filling stage was significantly positively correlated with dry matter accumulation at post-anthesis and grain yield. Main effects and partial correlation analysis showed that population photosynthesis of W0, W1j, W1b and W3 were regulated by canopy light transmittance and leaf area. On the other hand, population photosynthesis of W2 was mainly influenced by flag leaf photosynthetic rate. On this basis, planting 300 seedlings per square meter was the optimum combination. The combination of W2D2 increased population photosynthesis during mid-late growth stages and extended high population photosynthesis duration, which ultimately increased grain yield.展开更多
Data stream management system (DSMS) provides convenient solutions to the problem of processing continuous queries on data streams.Previous approaches for scheduling these queries and their operators assume that each ...Data stream management system (DSMS) provides convenient solutions to the problem of processing continuous queries on data streams.Previous approaches for scheduling these queries and their operators assume that each operator runs in separate thread or all operators combine in one query plan and run in a single thread.Both approaches suffer from severe drawbacks concerning the thread overhead and the stalls due to expensive operators.To overcome these drawbacks,a novel approach called clustered operators scheduling (COS) is proposed that adaptively clusters operators of the query plan into a number of groups based on their selectivity and computing cost using S-mean clustering.Experimental evaluation is provided to demonstrate the potential benefits of COS scheduling over the other scheduling strategies.COS can provide adaptive,flexible,reliable,scalable and robust design for continuous query processor.展开更多
A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Ea...A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service.Moreover,the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas.To enhance the forwarding capability of satellite networks,we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall.Then,we propose a multi-region cooperative traffic scheduling algorithm.The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding,significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding.This algorithm can utilize all the global satellite resources and improve the utilization of network resources.We model the cooperative multi-region scheduling of large-scale LEO satellites.Based on the model,we build a system testbed using OMNET++to compare the proposed method with existing techniques.The simulations show that our proposed method can reduce the packet loss probability by 30%and improve the resource utilization ratio by 3.69%.展开更多
In order to avoid severe performance degradation led by the inter-cell interference (ICI) in orthogonal frequency division multiple access (OFDMA) systems with a frequency reused factor (FRF) of 1,distributed schedule...In order to avoid severe performance degradation led by the inter-cell interference (ICI) in orthogonal frequency division multiple access (OFDMA) systems with a frequency reused factor (FRF) of 1,distributed schedule algorithm (DS-OCS) and distributed proportional fairness schedule algorithm (DPFS-OCS) based on orthogonal complement space (OCS) were proposed. The first right and left singular vectors of the channel that the user experienced were selected as the transmitting and receiving beamforming vectors. An interference space was spanned by the left singular vectors of the entire interference users in the same channel. The most suitable user lay in the OCS of the interference space was scheduled to avoid suffering interference from neighboring cells based on the criterion of system capacity maximizing and proportional fairness. The simulation results show that the average system capacity can be improved by 2%-4% compared with the DS-OCS algorithm with the Max C/I algorithm,by 6%-10% compared with the DPFS-OCS algorithm with the PF algorithm.展开更多
A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a p...A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a polytopic linear parameter varying (LPV) model is developed to represent the complex nonlinear longitudinal dynamics of the FAHV. Secondly, based on the obtained polytopic LPV model, the flight envelope is divided into four smaller subregions, and four gain-scheduled controllers are designed for these parameter subregions. Then, by the defined switching characteristic function, these gain-scheduled controllers are switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a given tracking error performance criterion. The condition of gain-scheduled switching controller synthesis is given in terms of linear matrix inequalities (LMIs) which can be easily solved by using standard software packages. Finally, simulation results show the effectiveness of the presented method.展开更多
This paper addresses the single-machine scheduling problem with release times minimizing the total completion time. Under the circumstance of incomplete global information at each decision time, a two-level rolling sc...This paper addresses the single-machine scheduling problem with release times minimizing the total completion time. Under the circumstance of incomplete global information at each decision time, a two-level rolling scheduling strategy (TRSS) is presented to create the global schedule step by step. The estimated global schedules are established based on a dummy schedule of unknown jobs. The first level is the preliminary scheduling based on the predictive window and the second level is the local scheduling for sub-problems based on the rolling window. Performance analysis demonstrates that TRSS can improve the global schedules. Computational results show that the solution quality of TRSS outperforms that of the existing rolling procedure in most cases.展开更多
A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission.At first,based on description of satellite data transmission request,satellite data tra...A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission.At first,based on description of satellite data transmission request,satellite data transmission task model and satellite data transmission scheduling problem model are established.Secondly,the conflicts in scheduling are discussed.According to the meaning of possible conflict,the method to divide possible conflict task set is given.Thirdly,a hybrid algorithm which consists of genetic algorithm and heuristic information is presented.The heuristic information comes from two concepts,conflict degree and conflict number.Finally,an example shows the algorithm's feasibility and performance better than other traditional展开更多
Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon...Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.展开更多
基金the financial support of the National Key Research and Development Plan(2021YFB3302501)the financial support of the National Natural Science Foundation of China(12102077)。
文摘Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e.,allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities.In this paper,the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence,space and resource constraints.Specifically,eight processing procedures are abstracted,where tractors,preparing spots,catapults,and launching are virtualized as machines.By analyzing the constraints in sortie scheduling,a mixed-integer planning model is constructed.In particular,the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency.The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue.To efficiently solve the formulated HFSP,which is essentially a combinatorial problem with tightly coupled constraints,a chaos-initialized genetic algorithm is developed.The solution framework is validated by the simulation environment referring to the Fort-class carrier,exhibiting higher sortie efficiency when compared to existing strategies.And animation of the simulation results is available at www.bilibili.com/video/BV14t421A7Tt/.The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future,and can be easily extended to other supporting scenarios,e.g.,ammunition delivery and aircraft maintenance.
文摘Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investigate the integrated scheduling of communication,sensing,and control for UAV-aided FSO communication systems.Initially,a sensing-control model is established via the control theory.Moreover,an FSO communication channel model is established by considering the effects of atmospheric loss,atmospheric turbulence,geometrical loss,and angle-of-arrival fluctuation.Then,the relationship between the motion control of the UAV and radial displacement is obtained to link the control aspect and communication aspect.Assuming that the base station has instantaneous channel state information(CSI)or statistical CSI,the thresholds of the sensing-control pattern activation are designed,respectively.Finally,an integrated scheduling scheme for performing communication,sensing,and control is proposed.Numerical results indicate that,compared with conventional time-triggered scheme,the proposed integrated scheduling scheme obtains comparable communication and control performance,but reduces the sensing consumed power by 52.46%.
基金Sponsored by the National Natural Science Foudation of China(50905016)
文摘A kind of automatic shift schedule optimization method is provided for a tracked vehicle with hydrodynamic-mechanical transmission in order to improve its dynamic performance. A dynamic model of integrated hydrodynamic-mechanical transmission is built in MATLAB/Simdriveline environment, and an optimum shift schedule is derived by using iSight software to call the dynamic model above, then the shift schedule is achieved after optimization. The simulation results show that the method is significant to improve the dynamic performance and gear-shifting smoothness theoretically and practically.
基金Project(51074051)supported by the National Natural Science Foundation of ChinaProject(N110307001)supported by the Fundamental Research Funds for the Central Universities,China
文摘In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.
文摘The task of maintenance organization is very heavy at wartime.The usability of armaments may be greatly improved by efficient task scheduling.In order to recover the battle effectiveness of units in battlefield as fast as possible,dynamic maintenance scheduling models with subject taken into account were built on the basis of analysis the feature of maintenance task.Maintenance task scheduling problem is very complicated.So it is decomposed into two sub-problems:static maintenance task scheduling and dynamic maintenance task scheduling problem with subject taken into account.Corresponding mathematic models were built to these sub-problems and their solutions were proposed.Dynamic maintenance task scheduling with subject taken into account is on the basis of static maintenance task scheduling.With the task changing in battlefield,dynamic task scheduling can be realized by repeatedly call of static maintenance task scheduling with subject taken into account.The experimented results show that dynamic maintenance task scheduling method with maintenance subject taken into account is valid.
基金This project was supported by Weapon System Advanced Research Foundation(51419010204KG01) and National ScienceFoundation of China(70272002).
文摘When analyze the uncertainty of the cost and the schedule of the spaceflight project, it is needed to know the value of the schedule-cost correlation coefficient. This paper deduces the schedule distribution, considering the effect of the cost, and proposes the estimation formula of the correlation coefficient between the in(schedule) and the cost. On the basis of the fact and Taylor expansion, the relation expression between the schedule-cost correlation coefficient and the in-schedule-cost correlation coefficient is put forward. By analyzing the value features of the estimation formula of the in-schedule-cost correlation coefficient, the general rules are proposed to ascertain the value of the schedule-cost correlation coefficient. An example is given to demonstrate how to approximately amend the schedule-cost correlation coefficient based on the historical statistics, which reveals the traditional assigned value is inaccurate. The universality of this estimation method is analyzed.
文摘There has been a number of algorithms designed to handle intra-query or inter-query scheduling in multiprocessor-based parallel database system. They all have the assumption that the processorsare identical. But in some cases, such as shared nothing environment, this assumption would not be fullyvalid. In this paper we devise and evaluate a scheduling algorithm ELLIST to handle nonprecedence-basedheterogeneous malleable scheduling problem. It uses LLIST-NM as subroutine that handles nonmalleablescheduling without precedence and assuming the processors are identical. Even though the problem we considered is NP-hard in the strong sense, the schedule generated by our algorithm is seen experimentally toachieve results that are close to optimum when there are enough tasks to be scheduled.
基金supported by the National Natural Science Fundation of China(6097401461273083)
文摘This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist.
文摘在中长期水火发电调度中考虑检修计划的影响是目前中长期水火发电调度面临的难题。利用现代整数代数建模技术,建立发电计划和检修计划协调优化的多场景调度模型。在该模型中,鉴于设备检修计划的连续性,在预测场景树的基础上,将场景节点划分成不同的场景,通过节点和场景关联矩阵,实现多场景下设备检修模型的构建。同时,鉴于中长期调度计划中发电计划和检修计划对时段间隔要求的不同,分别设置电量相关节点和电力相关节点,实现中长期发电计划和检修计划的协调。上述模型是一个大规模混合整数线性规划(mixed integer linear programming,MILP)问题,采用商用MILP求解器进行求解。大规模实际水火电系统的实例分析结果表明,所提模型和方法是可行、有效的。
基金Supported by China and CAS Main Direction Program of Knowledge Innovation (KSCX2-EW-B-1)China and CAS Knowledge Innovation Project(KSCX1-YW-09-06)
文摘A field experiment was conducted to elucidate the regulation mechanism of different irrigation schedules on population photosynthetic of winter wheat. The experiment included five irrigation schedules, such as no irrigation (W0), irrigation once at jointing (W1j) or at booting (W1b), irrigation twice at jointing and booting (W2), and irrigation three times at jointing, booting and grain-filling (W3) and three planting densities, such as 180 (D1), 300 (D2) and 450 (D3) seedlings per square meter. The results indicated that irrigation significantly improved population photosynthesis. The relationship between population photosynthesis and irrigation time/volume was to some extent parabolic. Improvements in population photosynthesis (resulting from more irrigation time/volume) were mainly related to increase in leaf area index and population light interception. Population photosynthesis exhibited a significantly negative correlation with canopy light transmittance. Population photosynthesis at grain filling stage was significantly positively correlated with dry matter accumulation at post-anthesis and grain yield. Main effects and partial correlation analysis showed that population photosynthesis of W0, W1j, W1b and W3 were regulated by canopy light transmittance and leaf area. On the other hand, population photosynthesis of W2 was mainly influenced by flag leaf photosynthetic rate. On this basis, planting 300 seedlings per square meter was the optimum combination. The combination of W2D2 increased population photosynthesis during mid-late growth stages and extended high population photosynthesis duration, which ultimately increased grain yield.
基金Project(50275150) supported by the National Natural Science Foundation of ChinaProject(20040533035) supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘Data stream management system (DSMS) provides convenient solutions to the problem of processing continuous queries on data streams.Previous approaches for scheduling these queries and their operators assume that each operator runs in separate thread or all operators combine in one query plan and run in a single thread.Both approaches suffer from severe drawbacks concerning the thread overhead and the stalls due to expensive operators.To overcome these drawbacks,a novel approach called clustered operators scheduling (COS) is proposed that adaptively clusters operators of the query plan into a number of groups based on their selectivity and computing cost using S-mean clustering.Experimental evaluation is provided to demonstrate the potential benefits of COS scheduling over the other scheduling strategies.COS can provide adaptive,flexible,reliable,scalable and robust design for continuous query processor.
基金This work was supported by the National Key R&D Program of China(2021YFB2900604).
文摘A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service.Moreover,the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas.To enhance the forwarding capability of satellite networks,we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall.Then,we propose a multi-region cooperative traffic scheduling algorithm.The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding,significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding.This algorithm can utilize all the global satellite resources and improve the utilization of network resources.We model the cooperative multi-region scheduling of large-scale LEO satellites.Based on the model,we build a system testbed using OMNET++to compare the proposed method with existing techniques.The simulations show that our proposed method can reduce the packet loss probability by 30%and improve the resource utilization ratio by 3.69%.
基金Projects(2009ZX03003-003, 2009ZX03003-004) supported by the Major National Science & Technology ProgramProject(B08038) supported by the "111" Project+1 种基金Project(HX0109012417) supported by Huawei Technologies Co., Ltd, ChinaProject(IRT0852) supported by Program for Changjiang Scholars and Innovative Research Team in Chinese University
文摘In order to avoid severe performance degradation led by the inter-cell interference (ICI) in orthogonal frequency division multiple access (OFDMA) systems with a frequency reused factor (FRF) of 1,distributed schedule algorithm (DS-OCS) and distributed proportional fairness schedule algorithm (DPFS-OCS) based on orthogonal complement space (OCS) were proposed. The first right and left singular vectors of the channel that the user experienced were selected as the transmitting and receiving beamforming vectors. An interference space was spanned by the left singular vectors of the entire interference users in the same channel. The most suitable user lay in the OCS of the interference space was scheduled to avoid suffering interference from neighboring cells based on the criterion of system capacity maximizing and proportional fairness. The simulation results show that the average system capacity can be improved by 2%-4% compared with the DS-OCS algorithm with the Max C/I algorithm,by 6%-10% compared with the DPFS-OCS algorithm with the PF algorithm.
基金supported by the National Outstanding Youth Science Foundation(61125306)the National Natural Science Foundation of Major Research Plan(91016004+2 种基金61034002)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20110092110020)the Scientific Research Foundation of Graduate School of Southeast University(YBJJ1103)
文摘A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a polytopic linear parameter varying (LPV) model is developed to represent the complex nonlinear longitudinal dynamics of the FAHV. Secondly, based on the obtained polytopic LPV model, the flight envelope is divided into four smaller subregions, and four gain-scheduled controllers are designed for these parameter subregions. Then, by the defined switching characteristic function, these gain-scheduled controllers are switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a given tracking error performance criterion. The condition of gain-scheduled switching controller synthesis is given in terms of linear matrix inequalities (LMIs) which can be easily solved by using standard software packages. Finally, simulation results show the effectiveness of the presented method.
基金Supported by National Natural Science Foundation of P.R. China (60274013, 60474002)Shanghai Development Foundation for Science and Technology (04DZ11008)Science Research Foundation of Shandong University at Weihai (XZ2005001)
文摘This paper addresses the single-machine scheduling problem with release times minimizing the total completion time. Under the circumstance of incomplete global information at each decision time, a two-level rolling scheduling strategy (TRSS) is presented to create the global schedule step by step. The estimated global schedules are established based on a dummy schedule of unknown jobs. The first level is the preliminary scheduling based on the predictive window and the second level is the local scheduling for sub-problems based on the rolling window. Performance analysis demonstrates that TRSS can improve the global schedules. Computational results show that the solution quality of TRSS outperforms that of the existing rolling procedure in most cases.
文摘A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission.At first,based on description of satellite data transmission request,satellite data transmission task model and satellite data transmission scheduling problem model are established.Secondly,the conflicts in scheduling are discussed.According to the meaning of possible conflict,the method to divide possible conflict task set is given.Thirdly,a hybrid algorithm which consists of genetic algorithm and heuristic information is presented.The heuristic information comes from two concepts,conflict degree and conflict number.Finally,an example shows the algorithm's feasibility and performance better than other traditional
基金supported by the National Natural Science Foundation of China(62073330)。
文摘Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.