In this article, parametric study of single confined fragment launch device was carried out. The configuration proposed was further studied to derive the empirical relationship for effect of fragment size,charge size,...In this article, parametric study of single confined fragment launch device was carried out. The configuration proposed was further studied to derive the empirical relationship for effect of fragment size,charge size, confinement thickness on fragment velocity. The simulations were carried out using ANSYSAUTODYNE explicit solver. Fragment velocities were estimated as a function of different parametric combinations of explosive quantities, charge length to diameter ratio, fragment height to diameter ratio,confinement thickness, fragment material and fragment mass. The data was further converted to charge to metal ratio under fragment and confinement. It was observed that, increase in confinement thickness,charge quantity and decrease in fragment height increases the fragment velocity. It is also noted that,charge to metal mass ratio under fragment significantly affects the fragment velocity. At the end, an empirical relationship for fragment velocity interms of all these parameters was established. Using these relations, two velocities 1831.92 m/s and 2523.9 m/s required for NATO STANAG 4496 IM test were estimated. The design parameters for these velocities are presented. Also, the results estimated using the empirical relationship has been compared with published experimental data. Error in the predicted velocities is within the acceptable range. The empirical relationship proposed will be useful for finalization of design of the fragment launch device.展开更多
Fragmental size and distribution of explosive particles play a more important role in the formation of hot-spot than original particles size under drop weight impact.Because the particles breakage and the hot-spots ig...Fragmental size and distribution of explosive particles play a more important role in the formation of hot-spot than original particles size under drop weight impact.Because the particles breakage and the hot-spots ignition will form in a sequence between fragments and between the fragments and the drop weight surface under the impact.In this paper,the size and distribution of the cyclotetramethylenete tranitramine(HMX)fragments were analyzed by the Laser Particle Size Analyzer Malvern MS2000.The post-analysis results of fragments showed that size distribution of fragments was strongly dependent on drop height.An empirical formula is established to describe the relationship between the average size and drop height.The volume-based probability distribution of explosive fragments was also studied by experiments and theoretical calculations.展开更多
A new strategy for the facile synthesis of very stable and mono-dispersed silver (Ag) quantum dots (QDs) is developed by laser fragmentation of bulk Ag in water using polysorbate 80 as a dispersing and stabilizing...A new strategy for the facile synthesis of very stable and mono-dispersed silver (Ag) quantum dots (QDs) is developed by laser fragmentation of bulk Ag in water using polysorbate 80 as a dispersing and stabilizing agent. The surfactant plays an important role in the formation of size-controlled Ag nano-structures. The Ag QDs have excellent photo-stability of ,-500 h and enhanced photoluminescence (PL) at 510 nm. This has significant implications for selective and ultrasensitive PL probes. Based on laser fragmentation in the biocompatible surfactant solution, our results have opened up a novel paradigm to obtain stable metal QDs directly from bulk targets. This is a breakthrough in the toxicity problems that arise from standard chemical fabrication.展开更多
为研究靶板材料性能对爆炸成型弹丸(Explosively Formed Projectile,EFP)侵彻靶后破片特性的影响,开展EFP侵彻不同材料靶板(Q235钢、45号钢、装甲钢、2A12铝)后效破片特性试验,采用X光摄影方法观测靶后破片云形态及膨胀尺寸,通过布置多...为研究靶板材料性能对爆炸成型弹丸(Explosively Formed Projectile,EFP)侵彻靶后破片特性的影响,开展EFP侵彻不同材料靶板(Q235钢、45号钢、装甲钢、2A12铝)后效破片特性试验,采用X光摄影方法观测靶后破片云形态及膨胀尺寸,通过布置多层纤维板获得破片散布特性,并对靶后破片进行回收。研究结果表明:在靶板密度一定的情况下,靶板强度主要影响破片云轴向膨胀能力,对径向膨胀能力影响很小;靶后破片环形毁伤区的飞散角位于20°~25°范围内差别不大,但是靶板背面出口崩落会造成靶后破片飞散角出现极大值,随着钢靶强度的增大,靶后破片径向散布增强,破片总数减小,但是大质量段钢破片数量增多;不同强度钢靶产生的钢破片平均尺寸满足Kipp等提出的基于材料流动应力的碎片尺寸模型。展开更多
作为表征动力破碎的重要参数之一,平均破碎块度的研究对于揭示岩石破碎机理具有重要意义。尽管进行了大量理论与实验研究,但是还缺乏从裂纹动力学角度来澄清岩石破碎和块度形成机理。基于动态荷载作用下翼型裂纹扩展模型和J. R. Gladde...作为表征动力破碎的重要参数之一,平均破碎块度的研究对于揭示岩石破碎机理具有重要意义。尽管进行了大量理论与实验研究,但是还缺乏从裂纹动力学角度来澄清岩石破碎和块度形成机理。基于动态荷载作用下翼型裂纹扩展模型和J. R. Gladden柱体动力屈曲失稳模型,提出了一种预测岩石平均破碎块度的方法,并探究了应变率对动态强度和平均破碎块度的影响。研究结果表明,随着应变率的增加,动态强度增加,平均破碎块度减小,且应变率依赖性逐渐降低。模型平均破碎块度预测与实验数据吻合良好。展开更多
In recent years,in order to improve the destructive effectiveness of munitions,the use of new types of destructive elements is an important way to improve destructive effectiveness.As a new type of reactive material,r...In recent years,in order to improve the destructive effectiveness of munitions,the use of new types of destructive elements is an important way to improve destructive effectiveness.As a new type of reactive material,reactive alloy contains a large portion of reactive metal elements(Al,Mg,Ti,Zr,etc.),which breaks up under high-velocity impact conditions,generating a large number of high-temperature combustible fragments,which undergo a violent combustion reaction with air.Compared with traditional metal polymers(Al-PTFE)and other reactive composites,it has higher density and strength,excellent mechanical properties and broader application prospects.Currently,researchers have mainly investigated the impact energy release mechanism of reactive alloys through impact tests,and found that there are several important stages in the process of the material from fragmentation to reaction,i.e.,impact fragmentation of the material,rapid heating and combustion reaction.This paper focuses on three problems that need to be solved in the impact-induced energy release process of reactive alloys,namely:the fragmentation mechanism and size distribution law of the fragments produced by the impact of the material on the target,the relationship between the transient temperatures and the size of the fragments,and the reaction temperatures and size thresholds of the fragments to undergo the chemical reaction.The current status of the research of the above problems is reviewed,some potential directions to reveal the impact induced reaction mechanism of reactive alloy is discussed.展开更多
文摘In this article, parametric study of single confined fragment launch device was carried out. The configuration proposed was further studied to derive the empirical relationship for effect of fragment size,charge size, confinement thickness on fragment velocity. The simulations were carried out using ANSYSAUTODYNE explicit solver. Fragment velocities were estimated as a function of different parametric combinations of explosive quantities, charge length to diameter ratio, fragment height to diameter ratio,confinement thickness, fragment material and fragment mass. The data was further converted to charge to metal ratio under fragment and confinement. It was observed that, increase in confinement thickness,charge quantity and decrease in fragment height increases the fragment velocity. It is also noted that,charge to metal mass ratio under fragment significantly affects the fragment velocity. At the end, an empirical relationship for fragment velocity interms of all these parameters was established. Using these relations, two velocities 1831.92 m/s and 2523.9 m/s required for NATO STANAG 4496 IM test were estimated. The design parameters for these velocities are presented. Also, the results estimated using the empirical relationship has been compared with published experimental data. Error in the predicted velocities is within the acceptable range. The empirical relationship proposed will be useful for finalization of design of the fragment launch device.
基金Science Challenging Program(TZ2016001)the National Natural Science Foundation of China(11572045,11472051)Innovative Group of Material and Structure Impact Dynamics(11521062)。
文摘Fragmental size and distribution of explosive particles play a more important role in the formation of hot-spot than original particles size under drop weight impact.Because the particles breakage and the hot-spots ignition will form in a sequence between fragments and between the fragments and the drop weight surface under the impact.In this paper,the size and distribution of the cyclotetramethylenete tranitramine(HMX)fragments were analyzed by the Laser Particle Size Analyzer Malvern MS2000.The post-analysis results of fragments showed that size distribution of fragments was strongly dependent on drop height.An empirical formula is established to describe the relationship between the average size and drop height.The volume-based probability distribution of explosive fragments was also studied by experiments and theoretical calculations.
基金supported by the National Natural Science Foundation of China(Grant Nos.11575102,11105085,11275116,and 11375108)the Fundamental Research Funds of Shandong University,China(Grant No.2015JC007)
文摘A new strategy for the facile synthesis of very stable and mono-dispersed silver (Ag) quantum dots (QDs) is developed by laser fragmentation of bulk Ag in water using polysorbate 80 as a dispersing and stabilizing agent. The surfactant plays an important role in the formation of size-controlled Ag nano-structures. The Ag QDs have excellent photo-stability of ,-500 h and enhanced photoluminescence (PL) at 510 nm. This has significant implications for selective and ultrasensitive PL probes. Based on laser fragmentation in the biocompatible surfactant solution, our results have opened up a novel paradigm to obtain stable metal QDs directly from bulk targets. This is a breakthrough in the toxicity problems that arise from standard chemical fabrication.
文摘为研究靶板材料性能对爆炸成型弹丸(Explosively Formed Projectile,EFP)侵彻靶后破片特性的影响,开展EFP侵彻不同材料靶板(Q235钢、45号钢、装甲钢、2A12铝)后效破片特性试验,采用X光摄影方法观测靶后破片云形态及膨胀尺寸,通过布置多层纤维板获得破片散布特性,并对靶后破片进行回收。研究结果表明:在靶板密度一定的情况下,靶板强度主要影响破片云轴向膨胀能力,对径向膨胀能力影响很小;靶后破片环形毁伤区的飞散角位于20°~25°范围内差别不大,但是靶板背面出口崩落会造成靶后破片飞散角出现极大值,随着钢靶强度的增大,靶后破片径向散布增强,破片总数减小,但是大质量段钢破片数量增多;不同强度钢靶产生的钢破片平均尺寸满足Kipp等提出的基于材料流动应力的碎片尺寸模型。
文摘作为表征动力破碎的重要参数之一,平均破碎块度的研究对于揭示岩石破碎机理具有重要意义。尽管进行了大量理论与实验研究,但是还缺乏从裂纹动力学角度来澄清岩石破碎和块度形成机理。基于动态荷载作用下翼型裂纹扩展模型和J. R. Gladden柱体动力屈曲失稳模型,提出了一种预测岩石平均破碎块度的方法,并探究了应变率对动态强度和平均破碎块度的影响。研究结果表明,随着应变率的增加,动态强度增加,平均破碎块度减小,且应变率依赖性逐渐降低。模型平均破碎块度预测与实验数据吻合良好。
文摘In recent years,in order to improve the destructive effectiveness of munitions,the use of new types of destructive elements is an important way to improve destructive effectiveness.As a new type of reactive material,reactive alloy contains a large portion of reactive metal elements(Al,Mg,Ti,Zr,etc.),which breaks up under high-velocity impact conditions,generating a large number of high-temperature combustible fragments,which undergo a violent combustion reaction with air.Compared with traditional metal polymers(Al-PTFE)and other reactive composites,it has higher density and strength,excellent mechanical properties and broader application prospects.Currently,researchers have mainly investigated the impact energy release mechanism of reactive alloys through impact tests,and found that there are several important stages in the process of the material from fragmentation to reaction,i.e.,impact fragmentation of the material,rapid heating and combustion reaction.This paper focuses on three problems that need to be solved in the impact-induced energy release process of reactive alloys,namely:the fragmentation mechanism and size distribution law of the fragments produced by the impact of the material on the target,the relationship between the transient temperatures and the size of the fragments,and the reaction temperatures and size thresholds of the fragments to undergo the chemical reaction.The current status of the research of the above problems is reviewed,some potential directions to reveal the impact induced reaction mechanism of reactive alloy is discussed.