期刊文献+
共找到574篇文章
< 1 2 29 >
每页显示 20 50 100
Microstructural evolution and hydraulic response of shale self-propped fracture using X-ray computed tomography and digital volume correlation
1
作者 Ting Huang Cheng Zhai +4 位作者 Ting Liu Yong Sun Hexiang Xu Yu Wang Jing Huang 《International Journal of Mining Science and Technology》 2025年第3期345-362,共18页
Methane in-situ explosive fracturing technology produces shale debris particles within fracture channels,enabling a self-propping effect that enhances the fracture network conductivity and long-term stability.This stu... Methane in-situ explosive fracturing technology produces shale debris particles within fracture channels,enabling a self-propping effect that enhances the fracture network conductivity and long-term stability.This study employs X-ray computed tomography(CT)and digital volume correlation(DVC)to investigate the microstructural evolution and hydromechanical responses of shale self-propped fracture under varying confining pressures,highlighting the critical role of shale particles in maintaining fracture conductivity.Results indicate that the fracture aperture in the self-propped sample is significantly larger than in the unpropped sample throughout the loading process,with shale particles tending to crush rather than embedded into the matrix,thus maintaining flow pathways.As confining pressure increases,contact areas between fracture surfaces and particles expand,enhancing the system's stability and compressive resistance.Geometric analyses show flow paths becoming increasingly concentrated and branched under high stress.This resulted in a significant reduction in connectivity,restricting fracture permeability and amplifying the nonlinear gas flow behavior.This study introduces a permeability-strain recovery zone and a novel sensitivity parameter m,delineating stress sensitivity boundaries for permeability and normal strain,with m-value increasing with stress,revealing four characteristic regions.These findings offer theoretical support for optimizing fracturing techniques to enhance resource extraction efficiency. 展开更多
关键词 Digital volume correlation X-ray CT scanning fracture aperture Deformation characteristics Stress sensitivity Permeability
在线阅读 下载PDF
Propagation criterion of hydraulic fracture in rock based on the rock micro-cracking mechanism
2
作者 Qingwang Cai Bingxiang Huang +1 位作者 Xinglong Zhao Yuekun Xing 《International Journal of Mining Science and Technology》 2025年第3期433-449,共17页
Hydraulic fracture(HF)formed in rock significantly helps with the development of geo-energy and georesources.The HF formation condition was challenging to understand,with obscure rock micro-cracking mechanisms being a... Hydraulic fracture(HF)formed in rock significantly helps with the development of geo-energy and georesources.The HF formation condition was challenging to understand,with obscure rock micro-cracking mechanisms being a key factor.The rock micro-cracking mechanism under gradient pore water pressure was analyzed on the scale of mineral particles and it was combined with macroscopic boundary conditions of rock hydraulic fracturing,obtaining the propagation criterion of HF in rock based on the rock micro-cracking mechanism which was verified by experiment.The results show that the disturbed skeleton stress induced by the disturbance of gradient pore water pressure in rock equals the pore water pressure difference.The overall range of the defined mechanical shape factor a/b is around 1,but greater than0.5.Under the combined influence of pore water pressure differences and macroscopic boundary stresses on the rock micro-cracking,micro-cracks form among rock mineral particles,micro-cracks connect to form micro-hydraulic fracture surfaces,and micro-hydraulic fracture surfaces open to form macrohydraulic fractures.HF begins to form at the micro-cracking initiation pressure(MCIP),which was tested by keeping the HF tip near the initiation point.The theoretical value of MCIP calculated by the proposed propagation criterion is close to MCIP tested. 展开更多
关键词 Hydraulic fracture Propagation criterion Micro-cracking mechanism Pore pressure Stress singularity
在线阅读 下载PDF
Production induced fracture closure of deep shale gas well under thermo-hydro-mechanical conditions 被引量:1
3
作者 Shi-Ming Wei Yang Xia +4 位作者 Yan Jin Xu-Yang Guo Jing-Yu Zi Kai-Xuan Qiu Si-Yuan Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1796-1813,共18页
Deep shale gas reservoirs have geological characteristics of high temperature,high pressure,high stress,and inferior ability to pass through fluids.The multi-stage fractured horizontal well is the key to exploiting th... Deep shale gas reservoirs have geological characteristics of high temperature,high pressure,high stress,and inferior ability to pass through fluids.The multi-stage fractured horizontal well is the key to exploiting the deep shale gas reservoir.However,during the production process,the effectiveness of the hydraulic fracture network decreases with the closure of fractures,which accelerates the decline of shale gas production.In this paper,we addressed the problems of unclear fracture closure mechanisms and low accuracy of shale gas production prediction during deep shale gas production.Then we established the fluid—solid—heat coupled model coupling the deformation and fluid flow among the fracture surface,proppant and the shale matrix.When the fluid—solid—heat coupled model was applied to the fracture network,it was well solved by our numerical method named discontinuous discrete fracture method.Compared with the conventional discrete fracture method,the discontinuous discrete fracture method can describe the three-dimensional morphology of the fracture while considering the effect of the change of fracture surface permeation coefficient on the coupled fracture—matrix flow and describing the displacement discontinuity across the fracture.Numerical simulations revealed that the degree of fracture closure increases as the production time proceeds,and the degree of closure of the secondary fractures is higher than that of the primary fractures.Shale creep and proppant embedment both increase the degree of fracture closure.The reduction in fracture surface permeability due to proppant embedment reduces the rate of fluid transfer between matrix and fracture,which has often been overlooked in the past.However,it significantly impacts shale gas production,with calculations showing a 24.7%cumulative three-year yield reduction.This study is helpful to understand the mechanism of hydraulic fracture closure.Therefore,it provides the theoretical guidance for maintaining the long-term effectiveness of hydraulic fractures. 展开更多
关键词 Shalegas fracture closure Fluid-solid-heat coupling Discontinuous discrete fracture
在线阅读 下载PDF
Multiple damage zones around hydraulic fractures generated by high-frequency pulsating hydraulic fracturing
4
作者 Yan Peng Sheng-Jie Wei +2 位作者 Guang-Qing Zhang Da-Wei Zhou Chuang-Chao Xu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2688-2702,共15页
Pulsating hydraulic fracturing(PHF)is a promising fracturing method and can generate a dynamic periodic pressure.The periodic pressure can induce fatigue failure of rocks and decrease initiation pressure of fracture.I... Pulsating hydraulic fracturing(PHF)is a promising fracturing method and can generate a dynamic periodic pressure.The periodic pressure can induce fatigue failure of rocks and decrease initiation pressure of fracture.If the frequency of periodic pressure exceeds 10 Hz,the distribution of pressure along the main fracture will be heterogeneous,which is much different from the one induced by the common fracturing method.In this study,the impact of this special spatial feature of pressure on hydraulic fracture is mainly investigated.A coupled numerical simulation model is first proposed and verified through experimental and theoretical solutions.The mechanism of secondary fracture initiation around the main fracture is then discovered.In addition,sensitivity studies are conducted to find out the application potential of this new method.The results show that(1)this coupled numerical simulation model is accurate.Through comparison with experimental and theoretical data,the average error of this coupled model is less than 1.01%.(2)Even if a reservoir has no natural fracture,this heterogeneous distribution pressure can also cause many secondary fractures around the main fracture.(3)The mechanism of secondary fracture initiation is that this heterogeneous distribution pressure causes tensile stress at many locations along the main fracture.(4)Through adjusting the stimulation parameters,the stimulation efficiency can be improved.The average and amplitude of pressure can increase possibility of secondary fracture initiation.The frequency of this periodic pressure can increase number of secondary fractures.Even 6 secondary fractures along a 100 m-length main fracture can be generated.(5)The influence magnitudes of stimulation parameters are larger than ones of geomechanical properties,therefore,this new fracturing method has a wide application potential. 展开更多
关键词 Tight reservoir Reservoir stimulation Numerical simulation Secondary fracture fracture initiation
在线阅读 下载PDF
Identifying the real fracture hidden in rock microcrack zone by acoustic emission energy
5
作者 Yuekun Xing Bingxiang Huang +6 位作者 Guangqing Zhang Binghong Li Hang Xu Xuejie Jiao Yang Yu Taisen Han Jinlong Chen 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期731-746,共16页
Identifying the real fracture of rock hidden in acoustic emission(AE)source clusters(AE-depicted microcrack zone)remains challenging and crucial.Here we revealed the AE energy(representing dissipated energy)distributi... Identifying the real fracture of rock hidden in acoustic emission(AE)source clusters(AE-depicted microcrack zone)remains challenging and crucial.Here we revealed the AE energy(representing dissipated energy)distribution rule in the rock microcrack zone and proposed an AE-energy-based method for identifying the real fracture.(1)A set of fracture experiments were performed on granite using wedgeloading,and the fracture process was detected and recorded by AE.The microcrack zone associated with the energy dissipation was characterized by AE sources and energy distribution,utilizing our selfdeveloped AE analysis program(RockAE).(2)The accumulated AE energy,an index representing energy dissipation,across the AE-depicted microcrack zone followed the normal distribution model(the mean and variance relate to the real fracture path and the microcrack zone width).This result implies that the nucleation and coalescence of massive cracks(i.e.,real fracture generation process)are supposed to follow a normal distribution.(3)Then,we obtained the real fracture extension path by joining the peak positions of the AE energy normal distribution curve at different cross-sections of the microcrack zone.Consequently,we distinguished between the microcrack zone and the concealed real fracture within it.The deviation was validated as slight as 1–3 mm. 展开更多
关键词 GeoEnergy exploitation Rock fracture fracture identification Acoustic emission AE energy analysis
在线阅读 下载PDF
The law of fracture propagation and intersection in zipper fracturing of deep shale gas wells
6
作者 WANG Qiang WANG Yufeng +3 位作者 HU Yongquan ZHAO Jinzhou SONG Yi SHEN Cheng 《Petroleum Exploration and Development》 SCIE 2024年第5期1316-1326,共11页
In response to the unclear understanding of fracture propagation and intersection interference in zipper fracturing under the factory development model of deep shale gas wells,a coupled hydro-mechanical model for zipp... In response to the unclear understanding of fracture propagation and intersection interference in zipper fracturing under the factory development model of deep shale gas wells,a coupled hydro-mechanical model for zipper fracturing considering the influence of natural fracture zones was established based on the finite element–discrete element method.The reliability of the model was verified using experimental data and field monitoring pressure increase data.Taking the deep shale gas reservoir in southern Sichuan as an example,the propagation and interference laws of fracturing fractures under the influence of natural fracture zones with different characteristics were studied.The results show that the large approaching angle fracture zone has a blocking effect on the forward propagation of fracturing fractures and the intersection of inter well fractures.During pump shutdown,hydraulic fractures exhibit continued expansion behavior under net pressure driving.Under high stress difference,as the approaching angle of the fracture zone increases,the response well pressure increase and the total length of the fractured fracture show a trend of first decreasing and then increasing,and first increasing and then decreasing,respectively.Compared to small approach angle fracture zones,natural fracture zones with large approach angles require longer time and have greater difficulty to intersect.The width of fractures and the length of natural fractures are negatively and positively correlated with the response well pressure increase,respectively,and positively and negatively correlated with the time required for intersection,the total length of hydraulic fractures,and fracturing efficiency,respectively.As the displacement distance of the well increases,the probability of fracture intersection decreases,but the regularity between displacement distance and the response well pressure increase and the total length of fractures is not obvious. 展开更多
关键词 thin sand-mud interbedded reservoir fracture penetration fracturing simulation experiment numerical simulation fracture penetration discrimination criterion fracturing performance evaluation
在线阅读 下载PDF
Mechanisms of fracture propagation from multi-cluster using a phase field based HMD coupling model in fractured reservoir
7
作者 Yun-Jin Wang Bo Wang +6 位作者 Hang Su Tu Chang Ren-Cheng Dong Li-Zhe Li Wei-Yu Tang Ting-Xue Jiang Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1829-1851,共23页
Natural fractures(NFs)are common in shale and tight reservoirs,where staged multi-cluster fracturing of horizontal wells is a prevalent technique for reservoir stimulation.While NFs and stress interference are recogni... Natural fractures(NFs)are common in shale and tight reservoirs,where staged multi-cluster fracturing of horizontal wells is a prevalent technique for reservoir stimulation.While NFs and stress interference are recognized as significant factors affecting hydraulic fracture(HF)propagation,the combined influence of these factors remains poorly understood.To address this knowledge gap,a novel coupled hydromechanical-damage(HMD)model based on the phase field method is developed to investigate the propagation of multi-cluster HFs in fractured reservoirs.The comprehensive energy functional and control functions are established,while incorporating dynamic fluid distribution between multiple perforation clusters and refined changes in rock mechanical parameters during hydraulic fracturing.The HMD coupled multi-cluster HF propagation model investigates various scenarios,including single HF and single NF,reservoir heterogeneity,single HF and NF clusters,and multi-cluster HFs with NF clusters.The results show that the HMD coupling model can accurately capture the impact of approach angle(θ),stress difference and cementation strength on the interaction of HF and NF.The criterion of the open and cross zones is not fixed.The NF angle(a)is not a decisive parameter to discriminate the interaction.According to the relationship between approach angle(θ)and NF angle(a),the contact relationship of HF can be divided into three categories(θ=a,θ<a,andθ>a).The connected NF can increase the complexity of HF by inducing it to form branch fracture,resulting in a fractal dimension of HF as high as2.1280 at angles of±45°.Inter-fracture interference from the heel to the toe of HF shows the phenomenon of no,strong and weak interference.Interestingly,under the influence of NFs,distant HFs from the injection can become dominant fractures.However,as a gradually increases,inter-fracture stress interference becomes the primary factor influencing HF propagation,gradually superseding the dominance of NF induced fractures. 展开更多
关键词 HMD coupling Phase field Natural fracture Flow distribution Hydraulic fracturing Inter-fracture interference
在线阅读 下载PDF
Systematic prediction of the gas content, fractures, and brittleness in fractured shale reservoirs with TTI medium
8
作者 Yun Zhao Xiao-Tao Wen +2 位作者 Chen-Long Li Yang Liu Chun-Lan Xie 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3202-3221,共20页
The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and... The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and rock brittleness in fractured gas-bearing shale reservoirs. To better characterize gas-bearing shale reservoirs with tilted fractures, we optimized the petrophysical modeling based on the equivalent medium theory. Based on the advantages of shale petrophysical modeling, we not only considered the brittle mineral fraction but also the combined effect of shale porosity, gas saturation, and total organic carbon(TOC) when optimizing the brittleness index. Due to fractures generally functioning as essential channels for fluid storage and movement, fracture density and fracture fluid identification factors are critical geophysical parameters for fractured reservoir prediction. We defined a new fracture gas indication factor(GFI) to detect fracture-effective gas content. A new linear PP-wave reflection coefficient equation for a tilted transversely isotropic(TTI) medium was rederived, realizing the direct prediction of anisotropic fracture parameters and the isotropic elasticity parameters from offset vector tile(OVT)-domain seismic data. Synthetic seismic data experiments demonstrated that the inversion algorithm based on the L_P quasinorm sparsity constraint and the split-component inversion strategy exhibits high stability and noise resistance. Finally, we applied our new prediction method to evaluate fractured gas-bearing shale reservoirs in the Sichuan Basin of China, demonstrating its effectiveness. 展开更多
关键词 Petrophysical modeling Brittleness index fracture gas indication factor(GFI) Tilted transversely isotropic(TTI) fracture density
在线阅读 下载PDF
Spatio-temporal evolution of pore and fracture structures in coal induced by initial damage and creep behavior:A real-time NMR-based approach
9
作者 Lei Zhang Yimeng Wang +5 位作者 Mingzhong Gao Wenhao Jia Senlin Xie Wei Hou Xiangyu Wang Hao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第10期1409-1425,共17页
Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coa... Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coal resources.This study conducts cyclic loading-unloading and creep experiments on coal using a low-field nuclear magnetic resonance(NMR)experimental apparatus which is equipped with mechanical loading units,enabling real-time monitoring the T2spectrum.The experiments indicated that cyclic loading-unloading stress paths initiate internal damage within coal samples.Under identical creep stress conditions,coal samples with more initial damages had more substantial instantaneous deformation and creep deformation during the creep process.After undergoing nearly 35 h of staged creep,the total strains for coal samples CC01,CC02,and CC03 reach 2.160%,2.261%,and 2.282%,respectively.In the creep stage,the peak area ratio of seepage pores and microfractures(SPM)gradually diminishes.A higher degree of initial damage leads to a more pronounced compaction trend in the SPM of coal samples.Considering the porosity evolution of SPM during the creep process,this study proposes a novel fractional derivative model for the porosity evolution of SPM.The efficacy of the proposed model in predicting porosity evolution of SPM is substantiated through experimental validation.Furthermore,an analysis of the impact mechanisms on key parameters in the model was carried out. 展开更多
关键词 COAL Microscopic pore and fracture structures Initial damage Creep behavior Fractional porosity model of seepage pores and microfractures Nuclear magnetic resonance
在线阅读 下载PDF
Three-dimensional fracture space characterization and conductivity evolution analysis of induced un-propped fractures in shale gas reservoirs
10
作者 Bin Yang Wen-Jing Ma +3 位作者 Guan-Chang Pan Ke-Liu Wu Ying Zhong Zhang-Xin Chen 《Petroleum Science》 CSCD 2024年第6期4248-4261,共14页
Huge numbers of induced unpropped(IU)fractures are generated near propped fractures during hydraulic fracturing in shale gas reservoirs.But it is still unclear how their fracture space and conductivity evolve under in... Huge numbers of induced unpropped(IU)fractures are generated near propped fractures during hydraulic fracturing in shale gas reservoirs.But it is still unclear how their fracture space and conductivity evolve under in-situ conditions.This paper prepares three types of samples,namely,manually split vertical/parallel to beddings(MSV,MSP)and parallel natural fractures(NFP),to represent the varied IU fractures as well as their surface morphology.Laser scan and reconstruction demonstrate that the initial fracture spaces of MSVs and MSPs are limited as the asperities of newly created surfaces are wellmatched,and the NFPs have bigger space due to inhomogeneous geological corrosion.Surface slippage and consequent asperity mismatch increase the fracture width by several times,and the increase is proportional to surface roughness.Under stressful conditions,the slipped MSVs retain the smallest residual space and conductivity due to the newly sharp asperities.Controlled by the bedding structures and clay mineral hydrations,the conductivity of MSPs decreases most after treated with a fracturing fluid.The NFPs remain the highest conductivity,benefitting from their dispersive,gentle,and strong asperities.The results reveal the diverse evolution trends of IU fractures and can provide reliable parameters for fracturing design,post-fracturing evaluation,and productivity forecasting. 展开更多
关键词 Gas shale Induced unpropped fractures Surfac easperity fracture space Stress sensitivity
在线阅读 下载PDF
Multi-fracture growth behavior during TPDF in a horizontal well of multi-clustered perforations:An experimental research
11
作者 Yu-Shi Zou Can Yang +3 位作者 Shi-Cheng Zhang Xin-Fang Ma Yan-Chao Li Long-Qing Zou 《Petroleum Science》 CSCD 2024年第6期4230-4247,共18页
Temporary plugging and diverting fracturing(TPDF),involving inner-fracture temporary plugging(IFTP)and inner-stage temporary plugging(ISTP),has been proposed as a widely applied technique in China,for promoting the un... Temporary plugging and diverting fracturing(TPDF),involving inner-fracture temporary plugging(IFTP)and inner-stage temporary plugging(ISTP),has been proposed as a widely applied technique in China,for promoting the uniform initiation and propagation of multi-clustered hydraulic fractures(HFs)in a horizontal well of the shale oil/gas reservoirs.However,how the key plugging parameters controlling the multi-fracture growth and the pumping pressure response during TPDF in shale with dense bedding planes(BPs)and natural fractures(NFs)is still unclear,which limits the optimization of TPDF scheme.In this paper,a series of TPDF simulation experiments within a stage of multi-cluster in a horizontal well were carried out on outcrops of Longmaxi Formation shale using a large-scale true tri-axial fracturing simulation system,combined with the acoustic emission(AE)monitor and computed tomography(CT)scanning techniques.Each experiment was divided into three stages,including the conventional fracturing(CF),IFTP and ISTP.Multi-fracture initiation and propagation behavior,and the dominant controlling parameters were examined,containing the particle sizes,concentration of temporary plugging agent(TPA),and cluster number.The results showed that the number of transverse HFs(THFs)and the overall complexity of fracture morphology increase with the increase in TPA concentration and perforation cluster number.Obviously,the required concentration of TPA is positively correlated with the cluster number.Higher peak values and continuous fluctuations of pumping pressure during TPDF may indicate the creation of diversion fractures.The creation of standard THFs during CF is favorable to the creation of diversion fractures during TPDF.Moreover,the activation of BPs nearby the wellbore during CF is unfavorable to the subsequent pressure buildup during TPDF,resulting in poor plugging and diverting effect.Notably,under the strike-slip fault stress regime,the diversion of THFs is not likely during IFTP,which is similar as the results of ISTP to initiate mainly the un-initiated or under-propagated perforation clusters.Three typical pressure curve types during TPDF can be summarized to briefly identify the hydraulic fracture diversion effects,including good(multiple branches or/and THFs can be newly created),fair(HF initiation along the slightly opened BPs and then activating the NFs),and bad(HF initiation along the largely opened BPs and then connecting with the NFs). 展开更多
关键词 Shale Temporary plugging and diverting fracturing Bedding planes Natural fractures Multiple fractures
在线阅读 下载PDF
Study of the evolution characteristics of fiber-optic strain induced by the propagation of bedding fractures in hydraulic fracturing
12
作者 Su Wang Mian Chen +3 位作者 Jia-Xin Lv Kun-Peng Zhang Ya-Long Hao Bo-Wen Yao 《Petroleum Science》 CSCD 2024年第6期4219-4229,共11页
Shale reservoirs contain numerous bedding fractures,making the formation of complex fracture networks during fracturing a persistent technical challenge in evaluating shale fracture morphology.Distributed optical fibe... Shale reservoirs contain numerous bedding fractures,making the formation of complex fracture networks during fracturing a persistent technical challenge in evaluating shale fracture morphology.Distributed optical fiber sensing technology can effectively capture the process of fracture initiation and propagation,yet the evaluation method for the initiation and propagation of bedding fractures remains immature.This study integrates a distributed optical fiber sensing device based on optical frequency domain reflectometry(OFDR)with a large-scale true tri-axial fracturing physical simulation apparatus to conduct real-time monitoring experiments on shale samples from the Lianggaoshan Formation in the Sichuan Basin,where bedding is well-developed.The experimental results demonstrate that two bedding fractures in the shale sample initiated and propagated.The evolution characteristics of fiber-optic strain in a horizontal adjacent well,induced by the initiation and propagation of bedding fractures,are characterized by the appearance of a tensile strain convergence zone in the middle of the optical fiber,flanked by two compressive strain convergence zones.The initiation and propagation of the distal bedding fracture causes the fiber-optic strain in the horizontal adjacent well to superimpose,with the asymmetric propagation of the bedding fracture leading to an asymmetric tensile strain convergence zone in the optical fiber.Utilizing a finite element method coupled with a cohesive element approach,a forward model of fiber-optic strain in the horizontal adjacent well induced by the initiation and propagation of hydraulic fracturing bedding fractures was constructed.Numerical simulation analyses were conducted to evaluate the evolution of fiber-optic strain in the horizontal adjacent well,confirming the correctness of the observed evolution characteristics.The presence of a"wedge-shaped"tensile strain convergence zone in the fiber-optic strain waterfall plot,accompanied by two compressive strain convergence zones,indicates the initiation and propagation of bedding fractures during the fracturing process.These findings provide valuable insights for interpreting distributed fiber-optic data in shale fracturing field applications. 展开更多
关键词 Distributed fiber-optic sensing Identification of fracture growth Shale reservoir Bedding fractures Fiber-optic strain
在线阅读 下载PDF
Creep constitutive model considering nonlinear creep degradation of fractured rock 被引量:3
13
作者 Wang Chunping Liu Jianfeng +3 位作者 Chen Liang Liu Jian Wang Lu Liao Yilin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期105-116,共12页
Stability analysis of underground constructions requires a model study of rock masses’ long-term performance. Creep tests under different stress conditions was conducted on intact granite and granite samples fracture... Stability analysis of underground constructions requires a model study of rock masses’ long-term performance. Creep tests under different stress conditions was conducted on intact granite and granite samples fractured at 30° and 45° angles. The experimental results indicate that the steady creep strain rates of intact and fractured rock present an exponential increase trend with the increase of stress level. A nonlinear creep model is developed based on the experimental results, in which the initial damage caused by fracture together with the damage caused by constant load have been taken into consideration. The fitting analysis results indicated that the model proposed is more accurate at identifying the full creep regions in fractured granite, especially the accelerated stage of creep deformation. The least-square fit error of the proposed creep model is significantly lower than that of Nishihara model by almost an order of magnitude. An analysis of the effects of elastic modulus, viscosity coefficient, and damage factors on fractured rock strain rate and creep strain is conducted. If no consideration is given to the effects of the damage, the proposed nonlinear creep model can degenerate into to the classical Nishihara model. 展开更多
关键词 fractured rock DAMAGE CREEP Beishan granite Geological disposal
在线阅读 下载PDF
Experimental investigation of methane explosion fracturing in bedding shales:Load characteristics and three-dimensional fracture propagation 被引量:1
14
作者 Yu Wang Cheng Zhai +5 位作者 Ting Liu Jizhao Xu Wei Tang Yangfeng Zheng Xinyu Zhu Ning Luo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第10期1365-1383,共19页
Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl... Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology. 展开更多
关键词 Methane in-situ explosion fracturing Bedding shale fracture propagation Three-dimensional reconstruction Crack-generated fines Fractal dimension
在线阅读 下载PDF
Experimental investigation on coal pore-fracture variation and fractal characteristics synergistically affected by solvents for improving clean gas extraction 被引量:1
15
作者 Feilin Han Sheng Xue +3 位作者 Chunshan Zheng Zhongwei Chen Guofu Li Bingyou Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期413-425,共13页
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal... Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology. 展开更多
关键词 Clean gas extraction Chemical solvent Experimental investigation Fractal characteristics Pore fracture
在线阅读 下载PDF
Characteristics of proppant transport and placement within rough hydraulic fractures 被引量:1
16
作者 HUANG Hai ZHENG Yong +5 位作者 WANG Yi WANG Haizhu NI Jun WANG Bin YANG Bing ZHANG Wentong 《Petroleum Exploration and Development》 SCIE 2024年第2期453-463,共11页
A three-dimensional reconstruction of rough fracture surfaces of hydraulically fractured rock outcrops is carried out by casting process,a large-scale experimental setup for visualizing rough fractures is built to per... A three-dimensional reconstruction of rough fracture surfaces of hydraulically fractured rock outcrops is carried out by casting process,a large-scale experimental setup for visualizing rough fractures is built to perform proppant transport experiments.The typical characteristics of proppant transport and placement in rough fractures and its intrinsic mechanisms are investigated,and the influences of fracture inclination,fracture width and fracturing fluid viscosity on proppant transport and placement in rough fractures are analyzed.The results show that the rough fractures cause variations in the shape of the flow channel and the fluid flow pattern,resulting in the bridging buildup during proppant transport to form unfilled zone,the emergence of multiple complex flow patterns such as channeling,reverse flow and bypassing of sand-carrying fluid,and the influence on the stability of the sand dune.The proppant has a higher placement rate in inclined rough fractures,with a maximum increase of 22.16 percentage points in the experiments compared to vertical fractures,but exhibits poor stability of the sand dune.Reduced fracture width aggravates the bridging of proppant and induces higher pumping pressure.Increasing the viscosity of the fracturing fluid can weaken the proppant bridging phenomenon caused by the rough fractures. 展开更多
关键词 reservoir fracturing rough fracture PROPPANT transport and placement characteristics bridging buildup
在线阅读 下载PDF
Estimation of the anisotropy of hydraulic conductivity through 3D fracture networks using the directional geological entropy 被引量:1
17
作者 Chuangbing Zhou Zuyang Ye +2 位作者 Chi Yao Xincheng Fan Feng Xiong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期137-148,共12页
With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi... With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors. 展开更多
关键词 3D fracture network Geological entropy Directional entropic scale ANISOTROPY Hydraulic conductivity
在线阅读 下载PDF
Microdynamic mechanical properties and fracture evolution mechanism of monzogabbro with a true triaxial multilevel disturbance method 被引量:1
18
作者 Zhi Zheng Bin Deng +3 位作者 Hong Liu Wei Wang Shuling Huang Shaojun Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期385-411,共27页
The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the... The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated. 展开更多
关键词 True triaxial disturbance test Mechanical properties fracture evolution mechanism Disturbance-induced damage evolution Failure mechanism and precursor
在线阅读 下载PDF
Shared genetic architecture highlights the bidirectional association between major depressive disorder and fracture risk 被引量:1
19
作者 Pianpian Zhao Zhimin Ying +10 位作者 Chengda Yuan Haisheng Zhang Ao Dong Jianguo Tao Xiangjiao Yi Mengyuan Yang Wen Jin Weiliang Tian David Karasik Geng Tian Houfeng Zheng 《General Psychiatry》 CSCD 2024年第3期352-363,共12页
Background There is limited evidence suggesting that osteoporosis might exacerbate depressive symptoms,while more studies demonstrate that depression negatively affects bone density and increases fracture risk.Aims To... Background There is limited evidence suggesting that osteoporosis might exacerbate depressive symptoms,while more studies demonstrate that depression negatively affects bone density and increases fracture risk.Aims To explore the relationship between major depressive disorder(MDD)and fracture risk.Methods We conducted a nested case-control analysis(32670 patients with fracture and 397017 individuals without fracture)and a matched cohort analysis(16496 patients with MDD and 435492 individuals without MDD)in the same prospective UK Biobank data set.Further,we investigated the shared genetic architecture between MDD and fracture with linkage disequilibrium score regression and the MiXeR statistical tools.We used the conditional/conjunctional false discovery rate approach to identify the specific shared loci.We calculated the weighted genetic risk score for individuals in the UK Biobank and logistic regression was used to confirm the association observed in the prospective study.Results We found that MDD was associated with a 14%increase in fracture risk(hazard ratio(HR)1.14,95%CI 1.14 to 1.15,p<0.001)in the nested case-control analysis,while fracture was associated with a 72%increase in MDD risk(HR 1.72,95%CI 1.64 to 1.79,p<0.001)in the matched cohort analysis,suggesting a longitudinal and bidirectional relationship.Further,genetic summary data suggested a genetic overlap between MDD and fracture.Specifically,we identified four shared genomic loci,with the top signal(rs7554101)near SGIP1.The protein encoded by SGIP1 is involved in cannabinoid receptor type 1 signalling.We found that genetically predicted MDD was associated with a higher risk of fracture and vice versa.In addition,we found that the higher expression level of SGIP1 in the spinal cord and muscle was associated with an increased risk of fracture and MDD.Conclusions The genetic pleiotropy between MDD and fracture highlights the bidirectional association observed in the epidemiological analysis.The shared genetic components(such as SGIP1)between the diseases suggest that modulating the endocannabinoid system could be a potential therapeutic strategy for both MDD and bone loss. 展开更多
关键词 fracture matched OSTEOPOROSIS
在线阅读 下载PDF
Nonequilibrium Statistical Nature of Intergranular Brittle Fracture in Polycrystal
20
作者 邵彬 邢修三 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期240-246,共7页
The brittle fracture probability and reliability are obtained in terms of dislocation mechanism of microcrack evolution. The statistical distribution functions and statistical deviations of elongation, strength, plast... The brittle fracture probability and reliability are obtained in terms of dislocation mechanism of microcrack evolution. The statistical distribution functions and statistical deviations of elongation, strength, plastic work, crack extension force, fracture foughness, critical and crack length, can be derived in a unified fashion. 展开更多
关键词 fracture probability rel iabi 1 ity fracture strength crack extension force fracture foughness statistical distribution function.
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部