This paper studies the chaotic behaviours of the fractional-order unified chaotic system. Based on the approximation method in frequency domain, it proposes an electronic circuit model of tree shape to realize the fra...This paper studies the chaotic behaviours of the fractional-order unified chaotic system. Based on the approximation method in frequency domain, it proposes an electronic circuit model of tree shape to realize the fractional-order operator. According to the tree shape model, an electronic circuit is designed to realize the 2.7-order unified chaotic system. Numerical simulations and circuit experiments have verified the existence of chaos in the fraction-order unified system.展开更多
Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterp...Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterpart system, and the fractional-order system can be made asymptotically stable by this controller. By proving the existence of a sliding manifold containing fractional integral, the controller for a fractional-order system is obtained, which can stabilize it. A comparison between these different methods shows that the performance of a sliding mode controller with a fractional integral is more robust than the other for controlling a fractional order unified chaotic system.展开更多
Duality analysis of time series and complex networks has been a frontier topic during the last several decades.According to some recent approaches in this direction,the intrinsic dynamics of typical nonlinear systems ...Duality analysis of time series and complex networks has been a frontier topic during the last several decades.According to some recent approaches in this direction,the intrinsic dynamics of typical nonlinear systems can be better characterized by considering the related nonlinear time series from the perspective of networks science.In this paper,the associated network family of the unified piecewise-linear(PWL)chaotic family,which can bridge the gap of the PWL chaotic Lorenz system and the PWL chaotic Chen system,was firstly constructed and analyzed.We constructed the associated network family via the original and the modified frequency-degree mapping strategy,as well as the classical visibility graph and horizontal visibility graph strategy,after removing the transient states.Typical related network characteristics,including the network fractal dimension,of the associated network family,are computed with changes of single key parameter a.These characteristic vectors of the network are also compared with the largest Lyapunov exponent(LLE)vector of the related original dynamical system.It can be found that,some network characteristics are highly correlated with LLE vector of the original nonlinear system,i.e.,there is an internal consistency between the largest Lyapunov exponents,some typical associated network characteristics,and the related network fractal dimension index.Numerical results show that the modified frequency-degree mapping strategy can demonstrate highest correlation,which means it can behave better to capture the intrinsic characteristics of the unified PWL chaotic family.展开更多
In this paper, we have found a kind of interesting nonlinear phenomenon hybrid synchronization in linearly coupled fractional-order chaotic systems. This new synchronization mechanism, i.e., part of state variables ar...In this paper, we have found a kind of interesting nonlinear phenomenon hybrid synchronization in linearly coupled fractional-order chaotic systems. This new synchronization mechanism, i.e., part of state variables are anti- phase synchronized and part completely synchronized, can be achieved using a single linear controller with only one drive variable. Based on the stability theory of the fractional-order system, we investigated the possible existence of this new synchronization mechanism. Moreover, a helpful theorem, serving as a determinant for the gain of the controller, is also presented. Solutions of coupled systems are obtained numerically by an improved Adams Bashforth-Moulton algorithm. To support our theoretical analysis, simulation results are given.展开更多
In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-or...In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-order systems, is simple and theoretically rigorous.展开更多
In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an a...In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an adaptivefeedback controller is developed based on the stability theory for fractional systems.The presented control scheme,which contains only one single state variable,is simple and flexible,and it is suitable both for design and for implementation in practice.Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system.展开更多
In this paper, a simple adaptive linear feedback control method is proposed for controlling the scaling factor between two coupled unified chaotic systems to a desired value, based on the invarianee principle of diffe...In this paper, a simple adaptive linear feedback control method is proposed for controlling the scaling factor between two coupled unified chaotic systems to a desired value, based on the invarianee principle of differential equations. Under this control strategy, one can arbitrarily select the scaling factor. Numerical simulations are given to support the effectiveness of the proposed method and show the robustness against noise. Furthermore, a secure communication scheme based on the adaptive projective synchronization of unified chaotic systems is presented and numerical simulation shows its feasibility.展开更多
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to ac...This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance...Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance. Simulation of the fractional-order Lorenz chaotic system and fractional-order Chen's chaotic system with both parameters uncertainty and external disturbance show the applicability and the efficiency of the proposed scheme.展开更多
A simple full-state asymptotic trajectory control (FSATC) scheme is proposed to asymptotically drive full states of a unified chaotic system (UCS) to arbitrary desired trajectories. The FSATC uses only information...A simple full-state asymptotic trajectory control (FSATC) scheme is proposed to asymptotically drive full states of a unified chaotic system (UCS) to arbitrary desired trajectories. The FSATC uses only information, i.e. one state of the UCS. A sinusoidal wave and two chaotic variables are taken as illustrative tracking trajectories to verify that using the proposed FSATC can make full UCS states track desired trajectories with high tracking accuracy in a finite time.展开更多
This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projectiv...This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projective synchronization between three-dimensional (3D) integer-order Lorenz chaotic system and 3D fractional-order Chen chaotic system are presented to demonstrate the effectiveness of the proposed scheme.展开更多
This paper studies the stability of the fractional order unified chaotic system. On the unstable equilibrium points, the equivalent passivity'' method is used to design the nonlinear controller. With the definition ...This paper studies the stability of the fractional order unified chaotic system. On the unstable equilibrium points, the equivalent passivity'' method is used to design the nonlinear controller. With the definition of fractional derivatives and integrals, the Lyapunov function is constructed by which it is proved that the controlled fractional order system is stable. With Laplace transform theory, the equivalent integer order state equation from the fractional order nonlinear system is obtained, and the system output can be solved. The simulation results validate the effectiveness of the theory.展开更多
This paper investigates the synchronization between integer-order and fractional-order chaotic systems. By intro- ducing fractional-order operators into the controllers, the addressed problem is transformed into a syn...This paper investigates the synchronization between integer-order and fractional-order chaotic systems. By intro- ducing fractional-order operators into the controllers, the addressed problem is transformed into a synchronization one among integer-order systems. A novel general method is presented in the paper with rigorous proof. Based on this method, effective controllers are designed for the synchronization between Lorenz systems with an integer order and a fractional order, and for the synchronization between an integer-order Chen system and a fractional-order Liu system. Numerical results, which agree well with the theoretical analyses, are also given to show the effectiveness of this method.展开更多
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional...This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.展开更多
This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractiona...This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractional-order integral, the effective sliding mode controller is designed to realize the asymptotical stability of fractional-order chaotic economical systems. Comparing with the existing results, the main results in this paper are more practical and rigorous. Simulation results show the effectiveness and feasibility of the proposed sliding mode control method.展开更多
A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fract...A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fractional-order chaotic system and the non-commensurate fractional-order chaotic system, respectively. The designed control scheme guarantees the asymptotical stability of an uncertain fractional-order chaotic system. Simulation results are given for several fractional-order chaotic examples to illustrate the effectiveness of the proposed scheme.展开更多
The stability of impulsive fractional-order systems is discussed. A new synchronization criterion of fractional-order chaotic systems is proposed based on the stability theory of impulsive fractional-order systems. Th...The stability of impulsive fractional-order systems is discussed. A new synchronization criterion of fractional-order chaotic systems is proposed based on the stability theory of impulsive fractional-order systems. The synchronization criterion is suitable for the case of the order 0 〈 q ≤ 1. It is more general than those of the known results. Simulation results are given to show the effectiveness of the proposed synchronization criterion.展开更多
This paper studies the stability of the fractional order unified chaotic system with sliding mode control theory. The sliding manifold is constructed by the definition of fractional order derivative and integral for t...This paper studies the stability of the fractional order unified chaotic system with sliding mode control theory. The sliding manifold is constructed by the definition of fractional order derivative and integral for the fractional order unified chaotic system. By the existing proof of sliding manifold, the sliding mode controller is designed. To improve the convergence rate, the equivalent controller includes two parts: the continuous part and switching part. With Gronwall's inequality and the boundness of chaotic attractor, the finite stabilization of the fractional order unified chaotic system is proved, and the controlling parameters can be obtained. Simulation results are made to verify the effectiveness of this method.展开更多
By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters ...By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters α=1/29 and 1/29<α<2/29,respectively,which extends some related results of Li,et al. [Li DM,Lu JA,Wu XQ,Chen GR,Estimating the global basin of attraction and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Applications,2006,323(2): 844-853]. The theoretical results obtained in this paper will find wide application in chaos control and synchronization.展开更多
In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control...In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error,are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method.展开更多
文摘This paper studies the chaotic behaviours of the fractional-order unified chaotic system. Based on the approximation method in frequency domain, it proposes an electronic circuit model of tree shape to realize the fractional-order operator. According to the tree shape model, an electronic circuit is designed to realize the 2.7-order unified chaotic system. Numerical simulations and circuit experiments have verified the existence of chaos in the fraction-order unified system.
基金supported by the National Natural Science Foundation of China (Grant No. 60702023)the Natural Science Foundation of Zhejiang Province, China (Grant No. R1110443)
文摘Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterpart system, and the fractional-order system can be made asymptotically stable by this controller. By proving the existence of a sliding manifold containing fractional integral, the controller for a fractional-order system is obtained, which can stabilize it. A comparison between these different methods shows that the performance of a sliding mode controller with a fractional integral is more robust than the other for controlling a fractional order unified chaotic system.
文摘Duality analysis of time series and complex networks has been a frontier topic during the last several decades.According to some recent approaches in this direction,the intrinsic dynamics of typical nonlinear systems can be better characterized by considering the related nonlinear time series from the perspective of networks science.In this paper,the associated network family of the unified piecewise-linear(PWL)chaotic family,which can bridge the gap of the PWL chaotic Lorenz system and the PWL chaotic Chen system,was firstly constructed and analyzed.We constructed the associated network family via the original and the modified frequency-degree mapping strategy,as well as the classical visibility graph and horizontal visibility graph strategy,after removing the transient states.Typical related network characteristics,including the network fractal dimension,of the associated network family,are computed with changes of single key parameter a.These characteristic vectors of the network are also compared with the largest Lyapunov exponent(LLE)vector of the related original dynamical system.It can be found that,some network characteristics are highly correlated with LLE vector of the original nonlinear system,i.e.,there is an internal consistency between the largest Lyapunov exponents,some typical associated network characteristics,and the related network fractal dimension index.Numerical results show that the modified frequency-degree mapping strategy can demonstrate highest correlation,which means it can behave better to capture the intrinsic characteristics of the unified PWL chaotic family.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60973097).
文摘In this paper, we have found a kind of interesting nonlinear phenomenon hybrid synchronization in linearly coupled fractional-order chaotic systems. This new synchronization mechanism, i.e., part of state variables are anti- phase synchronized and part completely synchronized, can be achieved using a single linear controller with only one drive variable. Based on the stability theory of the fractional-order system, we investigated the possible existence of this new synchronization mechanism. Moreover, a helpful theorem, serving as a determinant for the gain of the controller, is also presented. Solutions of coupled systems are obtained numerically by an improved Adams Bashforth-Moulton algorithm. To support our theoretical analysis, simulation results are given.
文摘In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-order systems, is simple and theoretically rigorous.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61172023,60871025,and 10862001)the Natural Science Foundation of Guangdong Province,China (Grant Nos. S2011010001018 and 8151009001000060)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114420110003)
文摘In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an adaptivefeedback controller is developed based on the stability theory for fractional systems.The presented control scheme,which contains only one single state variable,is simple and flexible,and it is suitable both for design and for implementation in practice.Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 10372054 and 60575038) and the Science Foundation of Southern Yangtze University of China (Grant No 000408).
文摘In this paper, a simple adaptive linear feedback control method is proposed for controlling the scaling factor between two coupled unified chaotic systems to a desired value, based on the invarianee principle of differential equations. Under this control strategy, one can arbitrarily select the scaling factor. Numerical simulations are given to support the effectiveness of the proposed method and show the robustness against noise. Furthermore, a secure communication scheme based on the adaptive projective synchronization of unified chaotic systems is presented and numerical simulation shows its feasibility.
文摘This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
基金Project supported by the National Natural Science Foundation of China(Grant No.61203041)the Fundamental Research Funds for the Central Universities of China(Grant No.11MG49)
文摘Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance. Simulation of the fractional-order Lorenz chaotic system and fractional-order Chen's chaotic system with both parameters uncertainty and external disturbance show the applicability and the efficiency of the proposed scheme.
文摘A simple full-state asymptotic trajectory control (FSATC) scheme is proposed to asymptotically drive full states of a unified chaotic system (UCS) to arbitrary desired trajectories. The FSATC uses only information, i.e. one state of the UCS. A sinusoidal wave and two chaotic variables are taken as illustrative tracking trajectories to verify that using the proposed FSATC can make full UCS states track desired trajectories with high tracking accuracy in a finite time.
文摘This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projective synchronization between three-dimensional (3D) integer-order Lorenz chaotic system and 3D fractional-order Chen chaotic system are presented to demonstrate the effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China (Grant No. 60702023)Natural Science Foundation of Zhejiang Province (Grant No. Y107440)
文摘This paper studies the stability of the fractional order unified chaotic system. On the unstable equilibrium points, the equivalent passivity'' method is used to design the nonlinear controller. With the definition of fractional derivatives and integrals, the Lyapunov function is constructed by which it is proved that the controlled fractional order system is stable. With Laplace transform theory, the equivalent integer order state equation from the fractional order nonlinear system is obtained, and the system output can be solved. The simulation results validate the effectiveness of the theory.
文摘This paper investigates the synchronization between integer-order and fractional-order chaotic systems. By intro- ducing fractional-order operators into the controllers, the addressed problem is transformed into a synchronization one among integer-order systems. A novel general method is presented in the paper with rigorous proof. Based on this method, effective controllers are designed for the synchronization between Lorenz systems with an integer order and a fractional order, and for the synchronization between an integer-order Chen system and a fractional-order Liu system. Numerical results, which agree well with the theoretical analyses, are also given to show the effectiveness of this method.
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 11MG49)
文摘This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.51207173 and 51277192)
文摘This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractional-order integral, the effective sliding mode controller is designed to realize the asymptotical stability of fractional-order chaotic economical systems. Comparing with the existing results, the main results in this paper are more practical and rigorous. Simulation results show the effectiveness and feasibility of the proposed sliding mode control method.
基金supported by the National Natural Science Foundation of China (Grant No. 51109180)the Personal Special Fund of Northwest Agriculture and Forestry University,China (Grant No. RCZX-2009-01)
文摘A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fractional-order chaotic system and the non-commensurate fractional-order chaotic system, respectively. The designed control scheme guarantees the asymptotical stability of an uncertain fractional-order chaotic system. Simulation results are given for several fractional-order chaotic examples to illustrate the effectiveness of the proposed scheme.
基金supported by Scientific Research Foundation of Huaiyin Institute of Technology (Grant No. HGA1102)
文摘The stability of impulsive fractional-order systems is discussed. A new synchronization criterion of fractional-order chaotic systems is proposed based on the stability theory of impulsive fractional-order systems. The synchronization criterion is suitable for the case of the order 0 〈 q ≤ 1. It is more general than those of the known results. Simulation results are given to show the effectiveness of the proposed synchronization criterion.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60702023)the Key Scientific and Technological Project of Zhejiang Province of China (Grant No. 2007C11094)
文摘This paper studies the stability of the fractional order unified chaotic system with sliding mode control theory. The sliding manifold is constructed by the definition of fractional order derivative and integral for the fractional order unified chaotic system. By the existing proof of sliding manifold, the sliding mode controller is designed. To improve the convergence rate, the equivalent controller includes two parts: the continuous part and switching part. With Gronwall's inequality and the boundness of chaotic attractor, the finite stabilization of the fractional order unified chaotic system is proved, and the controlling parameters can be obtained. Simulation results are made to verify the effectiveness of this method.
文摘By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters α=1/29 and 1/29<α<2/29,respectively,which extends some related results of Li,et al. [Li DM,Lu JA,Wu XQ,Chen GR,Estimating the global basin of attraction and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Applications,2006,323(2): 844-853]. The theoretical results obtained in this paper will find wide application in chaos control and synchronization.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11401243 and 61403157)the Fundamental Research Funds for the Central Universities of China(Grant No.GK201504002)the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China(Grant No.KJ2015A256)
文摘In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error,are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method.