In this paper we present a new version of Chen's system: a piecewise linear (PWL) Chert system of fractional-order. Via a sigmoid-like function, the discontinuous system is transformed into a continuous system. By...In this paper we present a new version of Chen's system: a piecewise linear (PWL) Chert system of fractional-order. Via a sigmoid-like function, the discontinuous system is transformed into a continuous system. By numerical simulations, we reveal chaotic behaviors and also multistability, i.e., the existence of small pararheter windows where, for some fixed bifurcation parameter and depending on initial conditions, coexistence of stable attractors and chaotic attractors is possible. Moreover, we show that by using an algorithm to switch the bifurcation parameter, the stable attractors can be numerically approximated.展开更多
The ultimate proof of our understanding of nature and engineering systems is reflected in our ability to control them.Since fractional calculus is more universal, we bring attention to the controllability of fractiona...The ultimate proof of our understanding of nature and engineering systems is reflected in our ability to control them.Since fractional calculus is more universal, we bring attention to the controllability of fractional order systems. First,we extend the conventional controllability theorem to the fractional domain. Strictly mathematical analysis and proof are presented. Because Chua's circuit is a typical representative of nonlinear circuits, we study the controllability of the fractional order Chua's circuit in detail using the presented theorem. Numerical simulations and theoretical analysis are both presented, which are in agreement with each other.展开更多
We present the generalized forms of Parrondo's paradox existing in fractional-order nonlinear systems. The gener- alization is implemented by applying a parameter switching (PS) algorithm to the corresponding initi...We present the generalized forms of Parrondo's paradox existing in fractional-order nonlinear systems. The gener- alization is implemented by applying a parameter switching (PS) algorithm to the corresponding initial value problems associated with the fractional-order nonlinear systems. The PS algorithm switches a system parameter within a specific set of N 〉 2 values when solving the system with some numerical integration method. It is proven that any attractor of the concerned system can be approximated numerically. By replacing the words "winning" and "loosing" in the classical Parrondo's paradox with "order" and "chaos", respectively, the PS algorithm leads to the generalized Parrondo's paradox: chaos1 + chaos2 +..- + chaosN = order and order1 + order2 +.-. + orderN = chaos. Finally, the concept is well demon- strated with the results based on the fractional-order Chen system.展开更多
基金funded by the European Regional Development Funding via RISC projectby CPER Region Haute Normandie France,the Australian Research Council via a Future Fellowship(FT110100896)Discovery Project(DP140100203)
文摘In this paper we present a new version of Chen's system: a piecewise linear (PWL) Chert system of fractional-order. Via a sigmoid-like function, the discontinuous system is transformed into a continuous system. By numerical simulations, we reveal chaotic behaviors and also multistability, i.e., the existence of small pararheter windows where, for some fixed bifurcation parameter and depending on initial conditions, coexistence of stable attractors and chaotic attractors is possible. Moreover, we show that by using an algorithm to switch the bifurcation parameter, the stable attractors can be numerically approximated.
基金supported by the National Natural Science Foundation of China(Grant Nos.51109180 and 51479173)the Fundamental Research Funds for the Central Universities,China(Grant No.201304030577)+1 种基金the Northwest A&F University Foundation,China(Grant No.2013BSJJ095)the Scientific Research Foundation on Water Engineering of Shaanxi Province,China(Grant No.2013slkj-12)
文摘The ultimate proof of our understanding of nature and engineering systems is reflected in our ability to control them.Since fractional calculus is more universal, we bring attention to the controllability of fractional order systems. First,we extend the conventional controllability theorem to the fractional domain. Strictly mathematical analysis and proof are presented. Because Chua's circuit is a typical representative of nonlinear circuits, we study the controllability of the fractional order Chua's circuit in detail using the presented theorem. Numerical simulations and theoretical analysis are both presented, which are in agreement with each other.
文摘We present the generalized forms of Parrondo's paradox existing in fractional-order nonlinear systems. The gener- alization is implemented by applying a parameter switching (PS) algorithm to the corresponding initial value problems associated with the fractional-order nonlinear systems. The PS algorithm switches a system parameter within a specific set of N 〉 2 values when solving the system with some numerical integration method. It is proven that any attractor of the concerned system can be approximated numerically. By replacing the words "winning" and "loosing" in the classical Parrondo's paradox with "order" and "chaos", respectively, the PS algorithm leads to the generalized Parrondo's paradox: chaos1 + chaos2 +..- + chaosN = order and order1 + order2 +.-. + orderN = chaos. Finally, the concept is well demon- strated with the results based on the fractional-order Chen system.