A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equ...A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.展开更多
To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are re...To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are respectively introduced to describe the deformation of viscoelastic soil and the flow of pore water in the process of consolidation.Accordingly,an 1D rheological consolidation equation of double-layered soil is obtained,and its numerical analysis is performed by the implicit finite difference method.In order to verify its validity,the numerical solutions by the present method for some simplified cases are compared with the results in the related literature.Then,the influence of the revelent parameters on the rheological consolidation of double-layered soil are investigated.Numerical results indicate that the parameters of non-Darcian flow and FDMM of the first soil layer greatly influence the consolidation rate of double-layered soil.As the decrease of relative compressibility or the increase of relative permeability between the lower soil and the upper soil,the dissipation rate of excess pore water pressure and the settlement rate of the ground will be accelerated.Increasing the relative thickness of soil layer with high permeability or low compressibility will also accelerate the consolidation rate of double-layered soil.展开更多
对含有分数阶微分项和参数激励的Duffing⁃van der Pol振子的动力学行为进行了研究,分析了在黏惯性(1≤p≤2)和参数激励共同作用下系统的各项参数对系统幅频曲线的影响。采用平均法分析此系统,用等效线性阻尼和等效质量的概念处理分数阶...对含有分数阶微分项和参数激励的Duffing⁃van der Pol振子的动力学行为进行了研究,分析了在黏惯性(1≤p≤2)和参数激励共同作用下系统的各项参数对系统幅频曲线的影响。采用平均法分析此系统,用等效线性阻尼和等效质量的概念处理分数阶微分项,得到系统的近似解析解。将所得近似解析解与数值解进行比较,二者具有较高的吻合度,证明了解析解的正确性。分析了系统参数对幅频响应曲线的影响,发现共振峰值、共振频率、共振区域、多值解的范围和解的数量都会受到系统参数的影响。经过分析发现,外激励幅值和分数阶微分项系数在一定程度上会抑制参数激励的效果。展开更多
桥梁车辆移动载荷识别MFI(Moving Force Identification)是结构动力学领域中的一个典型反问题.针对现有基于共轭梯度方法的载荷识别方法对多轴车辆荷载识别效果不佳的问题,提出了一种基于改进分数阶共轭梯度算法IFCG(Improved Fractiona...桥梁车辆移动载荷识别MFI(Moving Force Identification)是结构动力学领域中的一个典型反问题.针对现有基于共轭梯度方法的载荷识别方法对多轴车辆荷载识别效果不佳的问题,提出了一种基于改进分数阶共轭梯度算法IFCG(Improved Fractional Conjugate Gradient)的载荷识别方法.基于车辆行驶过程在时域中建立车桥动力系统,通过模态叠加原理得到桥梁动态响应,将MFI问题转化为无约束优化问题;其次,引入新的搜索方向标量,使所提算法能够针对多轴以及高噪声情况下保持精度和识别效率;接着,通过识别两轴车辆移动载荷验证了所提方法的有效性;然后,对分数阶次进行定量对比研究,选择最优分数阶次;最后,通过识别多种工况下的三轴车辆载荷,将所提方法与现有方法进行对比,验证了IFCG方法在不同工况下的桥梁多轴车辆MFI都具有较高的识别精度和速度.展开更多
基金supported by the National Natural Science Foundation of China(70771080)the Special Fund for Basic Scientific Research of Central Colleges+2 种基金China University of Geosciences(Wuhan) (CUG090113)the Research Foundation for Outstanding Young TeachersChina University of Geosciences(Wuhan)(CUGQNW0801)
文摘A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.
基金Project(51578511)supported by the National Natural Science Foundation of China。
文摘To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are respectively introduced to describe the deformation of viscoelastic soil and the flow of pore water in the process of consolidation.Accordingly,an 1D rheological consolidation equation of double-layered soil is obtained,and its numerical analysis is performed by the implicit finite difference method.In order to verify its validity,the numerical solutions by the present method for some simplified cases are compared with the results in the related literature.Then,the influence of the revelent parameters on the rheological consolidation of double-layered soil are investigated.Numerical results indicate that the parameters of non-Darcian flow and FDMM of the first soil layer greatly influence the consolidation rate of double-layered soil.As the decrease of relative compressibility or the increase of relative permeability between the lower soil and the upper soil,the dissipation rate of excess pore water pressure and the settlement rate of the ground will be accelerated.Increasing the relative thickness of soil layer with high permeability or low compressibility will also accelerate the consolidation rate of double-layered soil.
基金This work was partly supported by the National Natural Science Foundation of China (11501581), the Project by Central South Uni- versity (502042032), and the China Postdoctoral Science Foundation (2015M570683).
文摘为了提高永磁同步电机(permanent magnet synchronous motor,PMSM)矢量控制系统的响应速度和抗干扰能力,提出一种分数阶模糊反步控制方法(fractional order fuzzy backstepping control,FOFB),以保证永磁同步电机更好的控制性能。首先,根据反步控制的原理,对系统分解,并在每一步中利用模糊逻辑系统来逼近系统的未知部分。其次,引入分数阶理论并选取符合系统规律的Lyapunov函数,得出合适的控制律和参数自适应律。最后,分别对比例积分微分调节(proportional integral derivative,PID)、模糊PID(fuzzy PID,F-PID)、整数阶模糊反步法(integer order fuzzy backstepping control,IOFB)、分数阶模糊反步法(fractional order fuzzy backstepping,FOFB)控制下的PMSM进行仿真。仿真和试验结果表明,FOFB控制在转速突变过程中能够实现转速的实时跟踪。相较于其他控制策略,加入负载转矩FOFB的下降转速为40 r/min、超调量为4.7%时的响应性能更好、抗干扰能力更优,这证明了FOFB控制方法的合理性和有效性。
文摘对含有分数阶微分项和参数激励的Duffing⁃van der Pol振子的动力学行为进行了研究,分析了在黏惯性(1≤p≤2)和参数激励共同作用下系统的各项参数对系统幅频曲线的影响。采用平均法分析此系统,用等效线性阻尼和等效质量的概念处理分数阶微分项,得到系统的近似解析解。将所得近似解析解与数值解进行比较,二者具有较高的吻合度,证明了解析解的正确性。分析了系统参数对幅频响应曲线的影响,发现共振峰值、共振频率、共振区域、多值解的范围和解的数量都会受到系统参数的影响。经过分析发现,外激励幅值和分数阶微分项系数在一定程度上会抑制参数激励的效果。