近几年来,深度学习无所不在,赋能于各个领域.尤其是人工智能与传统科学的结合(AI for science,AI4Science)引发广泛关注.在AI4Science领域,利用人工智能算法求解PDEs(AI4PDEs)已成为计算力学研究的焦点.AI4PDEs的核心是将数据与方程相融...近几年来,深度学习无所不在,赋能于各个领域.尤其是人工智能与传统科学的结合(AI for science,AI4Science)引发广泛关注.在AI4Science领域,利用人工智能算法求解PDEs(AI4PDEs)已成为计算力学研究的焦点.AI4PDEs的核心是将数据与方程相融合,并且几乎可以求解任何偏微分方程问题,由于其融合数据的优势,相较于传统算法,其计算效率通常提升数万倍.因此,本文全面综述了AI4PDEs的研究,总结了现有AI4PDEs算法、理论,并讨论了其在固体力学中的应用,包括正问题和反问题,展望了未来研究方向,尤其是必然会出现的计算力学大模型.现有AI4PDEs算法包括基于物理信息神经网络(physicsinformed neural network,PINNs)、深度能量法(deep energy methods,DEM)、算子学习(operator learning),以及基于物理神经网络算子(physics-informed neural operator,PINO).AI4PDEs在科学计算中有许多应用,本文聚焦于固体力学,正问题包括线弹性、弹塑性,超弹性、以及断裂力学;反问题包括材料参数,本构,缺陷的识别,以及拓朴优化.AI4PDEs代表了一种全新的科学模拟方法,通过利用大量数据在特定问题上提供近似解,然后根据具体的物理方程进行微调,避免了像传统算法那样从头开始计算,因此AI4PDEs是未来计算力学大模型的雏形,能够大大加速传统数值算法.我们相信,利用人工智能助力科学计算不仅仅是计算领域的未来重要方向,同时也是计算力学的未来,即是智能计算力学。展开更多
A novel rcgularization-based approach is presented for super-resolution reconstruction in order to achieve good tradeoff between noise removal and edge preservation. The method is developed by using L1 norm as data fi...A novel rcgularization-based approach is presented for super-resolution reconstruction in order to achieve good tradeoff between noise removal and edge preservation. The method is developed by using L1 norm as data fidelity term and anisotropic fourth-order diffusion model as a regularization item to constrain the smoothness of the reconstructed images. To evaluate and prove the performance of the proposed method, series of experiments and comparisons with some existing methods including bi-cubic interpolation method and bilateral total variation method are carried out. Numerical results on synthetic data show that the PSNR improvement of the proposed method is approximately 1.0906 dB on average compared to bilateral total variation method, and the results on real videos indicate that the proposed algorithm is also effective in terms of removing visual artifacts and preserving edges in restored images.展开更多
文摘近几年来,深度学习无所不在,赋能于各个领域.尤其是人工智能与传统科学的结合(AI for science,AI4Science)引发广泛关注.在AI4Science领域,利用人工智能算法求解PDEs(AI4PDEs)已成为计算力学研究的焦点.AI4PDEs的核心是将数据与方程相融合,并且几乎可以求解任何偏微分方程问题,由于其融合数据的优势,相较于传统算法,其计算效率通常提升数万倍.因此,本文全面综述了AI4PDEs的研究,总结了现有AI4PDEs算法、理论,并讨论了其在固体力学中的应用,包括正问题和反问题,展望了未来研究方向,尤其是必然会出现的计算力学大模型.现有AI4PDEs算法包括基于物理信息神经网络(physicsinformed neural network,PINNs)、深度能量法(deep energy methods,DEM)、算子学习(operator learning),以及基于物理神经网络算子(physics-informed neural operator,PINO).AI4PDEs在科学计算中有许多应用,本文聚焦于固体力学,正问题包括线弹性、弹塑性,超弹性、以及断裂力学;反问题包括材料参数,本构,缺陷的识别,以及拓朴优化.AI4PDEs代表了一种全新的科学模拟方法,通过利用大量数据在特定问题上提供近似解,然后根据具体的物理方程进行微调,避免了像传统算法那样从头开始计算,因此AI4PDEs是未来计算力学大模型的雏形,能够大大加速传统数值算法.我们相信,利用人工智能助力科学计算不仅仅是计算领域的未来重要方向,同时也是计算力学的未来,即是智能计算力学。
基金Projects(60963012,61262034)supported by the National Natural Science Foundation of ChinaProject(211087)supported by the Key Project of Ministry of Education of ChinaProjects(2010GZS0052,20114BAB211020)supported by the Natural Science Foundation of Jiangxi Province,China
文摘A novel rcgularization-based approach is presented for super-resolution reconstruction in order to achieve good tradeoff between noise removal and edge preservation. The method is developed by using L1 norm as data fidelity term and anisotropic fourth-order diffusion model as a regularization item to constrain the smoothness of the reconstructed images. To evaluate and prove the performance of the proposed method, series of experiments and comparisons with some existing methods including bi-cubic interpolation method and bilateral total variation method are carried out. Numerical results on synthetic data show that the PSNR improvement of the proposed method is approximately 1.0906 dB on average compared to bilateral total variation method, and the results on real videos indicate that the proposed algorithm is also effective in terms of removing visual artifacts and preserving edges in restored images.