Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and...Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and performance of different types of protective textiles.Three distinct structures of 3D woven textiles and 2D plain weave fabric made with similar high-performance fiber and areal density were designed and manufactured to be tested.Two samples,one composed of a single and the other of 4-panel layers,from each fabric type structure,were prepared,and tested against stabbing at[0○],[22.5○],and[45○]angle of incidence.A new stabbing experimental setup that entertained testing of the specimens at various angles of incidence was engineered and utilized.The stabbing bench is also equipped with magnetic sensors and a UK Home Office Scientific Development Branch(HOSDB)/P1/B sharpness engineered knives to measure the impact velocity and exerted impact energy respectively.A silicon compound was utilized to imprint the Back Face Signature(BFS)on the backing material after every specimen test.Each silicon print was then scanned,digitized,and precisely measured to evaluate the stab response and performance of the specimen based on different performance variables,including Depth of Trauma(DOT),Depth of Penetration(DOP),and Length of Penetration(LOP).Besides,the post-impact surface failure modes of the fabrics were also measured using Image software and analyzed at the microscale level.The results show stab angle of incidence greatly influences the stab response and performance of protective textiles.The outcome of the study could provide not only valuable insights into understanding the stab response and capabilities of protective textiles under different angle of incidence,but also provide valuable information for protective textile manufacturer,armor developer and stab testing and standardizing organizations to consider the angle of incidence while developing,testing,optimizing,and using protective textiles in various applications.展开更多
In recent years,several failures of double circuit transmission line on the same tower due to lightning were happened in Beijing power grid.Although it can be reclosed successful,the lightning strike caused a grave th...In recent years,several failures of double circuit transmission line on the same tower due to lightning were happened in Beijing power grid.Although it can be reclosed successful,the lightning strike caused a grave threat to the power grid security.The cause of the accident and the accident process were studied for the sake of further understanding of the impact of lightning on power grid.As an example,110 kV double circuit transmission line(Xilong-line) was analyzed.At first,the system topology was given.Through the analysis on relay protection actions and the fault recorder data,over voltage on the insulator strings was calculated.Based on the analysis and the calculation,accident cause and the process were presented respectively.Secondly,it comes to the conclusion that the lightning failure was caused by counterattack.The wave of the lightning over voltage would spread to the not grounded neutral point of the transformers,and make the neutral protective gap breakdown,then cause freewheeling with the frequency of 50 Hz.As results of the relay protection,the double circuit transmission line all tripped out.Finally,the causes of the accident were proposed that included terrain features,large corner towers,strong thunderstorm weather and poor grounded contact of the tower.展开更多
In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize...In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize the parameters of the model in detail.By employing this model,we conducted computations to characterize the response wavelength and bandwidth of variously sized metamaterial absorbers.A comparative analysis with Finite Difference Time Domain(FDTD)simulations demonstrated a remarkable level of consistency in the results.The designed absorbers were fabricated using micro-nano fabrication processes,and were experimentally tested to demonstrate absorption rates exceeding 90%at a wavelength of 9.28μm.The predicted results are then compared with test results.The comparison reveals good consistency in two aspects of the resonance responses,thereby confirming the rationality and accuracy of this model.展开更多
This paper deals with fault isolation in nonlinear analog circuits with tolerance under an insufficient number of independent voltage measurements.A neural network-based L1-norm optimization approach is proposed and u...This paper deals with fault isolation in nonlinear analog circuits with tolerance under an insufficient number of independent voltage measurements.A neural network-based L1-norm optimization approach is proposed and utilized in locating the most likely faulty elements in nonlinear circuits.The validity of the proposed method is verified by both extensive computer simulations and practical examples.One simulation example is presented in the paper.展开更多
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ...The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.展开更多
Test of consistency is critical for the analytic hierarchy process(AHP) methodology. When a pairwise comparison matrix(PCM) fails the consistency test, the decision maker(DM) needs to make revisions. The state of the ...Test of consistency is critical for the analytic hierarchy process(AHP) methodology. When a pairwise comparison matrix(PCM) fails the consistency test, the decision maker(DM) needs to make revisions. The state of the art focuses on changing a single entry or creating a new matrix based on the original inconsistent matrix so that the modified matrix can satisfy the consistency requirement. However, we have noticed that the reason that causes inconsistency is not only numerical inconsistency, but also logical inconsistency, which may play a more important role in the whole inconsistency. Therefore, to realize satisfactory consistency, first of all, we should change some entries that form a directed circuit to make the matrix logically consistent, and then adjust other entries within acceptable deviations to make the matrix numerically consistent while preserving most of the original comparison information. In this paper, we firstly present some definitions and theories, based on which two effective methods are provided to identify directed circuits. Four optimization models are proposed to adjust the original inconsistent matrix. Finally, illustrative examples and comparison studies show the effectiveness and feasibility of our method.展开更多
The data-driven fault diagnosis methods can improve the reliability of analog circuits by using the data generated from it. The data have some characteristics, such as randomness and incompleteness, which lead to the ...The data-driven fault diagnosis methods can improve the reliability of analog circuits by using the data generated from it. The data have some characteristics, such as randomness and incompleteness, which lead to the diagnostic results being sensitive to the specific values and random noise. This paper presents a data-driven fault diagnosis method for analog circuits based on the robust competitive agglomeration (RCA), which can alleviate the incompleteness of the data by clustering with the competing process. And the robustness of the diagnostic results is enhanced by using the approach of robust statistics in RCA. A series of experiments are provided to demonstrate that RCA can classify the incomplete data with a high accuracy. The experimental results show that RCA is robust for the data needed to be classified as well as the parameters needed to be adjusted. The effectiveness of RCA in practical use is demonstrated by two analog circuits.展开更多
Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formula...Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formulas of fluctuating wind-induced responses and equivalent static wind loads(ESWLSs)were derived based on structural dynamics and random vibration theory.The consistent coupled method(CCM)was presented to compensate the coupled term between background and resonant response.Taking the super-large cooling tower(H=215 m)of nuclear power plant in Jiangxi Province,China,which is the highest and largest in China,as the example,based on modified equivalent beam-net design method,the aero-elastic model for simultaneous pressure and vibration measurement of super-large cooling tower is firstly carried out.Then,combining wind tunnel test and CCM,the effects of self-excited force on the surface pressures and wind-induced responses are discussed,and the wind-induced response characteristics of background component,resonant component,coupled term between background and resonant response,fluctuating responses,and wind vibration coefficients are discussed.It can be concluded that wind-induced response mechanism must be understood to direct the wind resistant design for super-large cooling towers.展开更多
Jiangyin Yangtze highway bridge is a suspension bridge with main span 1 385 m. The south tower pier is located on a 70 m bedrock slope with bedding plane of strata tipping to the river channel and several weak interca...Jiangyin Yangtze highway bridge is a suspension bridge with main span 1 385 m. The south tower pier is located on a 70 m bedrock slope with bedding plane of strata tipping to the river channel and several weak intercalated layers. The stability of the tower pier is one of the main engineering geologic problems. On the basis of investigation and survey of relevant geologic condition analyses, the geomechanical model experiments are carried out for stability study of various foundation alternatives’ advantages and disadvantages. Pile foundation has been finally adopted and constructed, and this is justified by practice.展开更多
With the growth of capacity of high voltage direct current(HVDC) transmission lines,the ratings of thyristor valves,which are one of the most critical equipments,are getting higher and higher.Verification of performan...With the growth of capacity of high voltage direct current(HVDC) transmission lines,the ratings of thyristor valves,which are one of the most critical equipments,are getting higher and higher.Verification of performance of thyristor valves particularly designed for HVDC project plays an important role in the handover of products between the manufacturer and the client.Conventional test facilities based on philosophy of direct test cannot meet the requirements for modern thyristor valves.New test facilities with high ratings are necessarily built based on philosophy of synthetic test.Over the conventional direct test circuit,the later is an economical and feasible solution with less financial investment and higher test capability.However,the equivalency between the synthetic test and the direct test should be analyzed technically in order to make sure that the condition of verification test in a synthetic test circuit should satisfy the actual operation condition of thyristor valves existing in a real HVDC project,just as in a direct test circuit.Equivalency analysis is focused in this paper,covering the scope of thyristor valves' steady state,and transient state.On the basis of the results achieved,a synthetic test circuit of 6 500 A/50 kV for operational tests of thyristor valves used for up to UHVDC project has newly been set up and already put into service in Xi'an High Voltage Apparatus Research Institute Co.,Ltd.(XIHARI),China.Some of the results have been adopted also by a new national standard of China.展开更多
In the subtropical monsoon karst regions uplifted in the Quaternary, the cone karst coexists with many kind of topography, such as plains, valleys, depressions, poljes, bank slopes and terraces. This is the major diff...In the subtropical monsoon karst regions uplifted in the Quaternary, the cone karst coexists with many kind of topography, such as plains, valleys, depressions, poljes, bank slopes and terraces. This is the major difference between the distribution of the cone karst and the tower karst. The latter is observed only on plains or basins. This situation brings about the idea that there are different origins for cone karst and tower karst. Moreover, the main aspects of cone karst morphology is illustrated in this paper, through which an overall conception of the cone karst may be figured out.展开更多
As a method for testing a sequential circuit efficiently, a scan design is usually used. But, since this design has some drawbacks, a non-scan testable design should be discussed. The testable design can be implemente...As a method for testing a sequential circuit efficiently, a scan design is usually used. But, since this design has some drawbacks, a non-scan testable design should be discussed. The testable design can be implemented by enhancing controllability and observability. This paper discusses a non-scan testable design for a sequential circuit by only focusing the improvement of controllability. The proposed design modifies a circuit so that all the FFs can be directly controlled by primary input lines in a test mode. Experimental results show that we can get a good testability using this method.展开更多
This paper proposed an improved temperature prediction model for oil-immersed transformer.The influences of the environmental temperature and heat-sinking capability changing with temperature were considered.When calc...This paper proposed an improved temperature prediction model for oil-immersed transformer.The influences of the environmental temperature and heat-sinking capability changing with temperature were considered.When calculating the heat dissipation from the transformer tank to surroundings,the average oil temperature was selected as the node value in the thermal circuit.The new thermal models will be validated with the delivery experimental data of three transformers: a 220 kV-300 MV.A unit,a 110 kV40 MV.A unit and a 220 kV-75 MV.A unit.Meanwhile,the results from the proposed model were also compared with two methods recommended in the IEC loading guide.展开更多
Device physics research for submicron and deep submicron space microelectronics devices and integrated circuits will be described in three topics.1.Thin film submicron and deep submicron SOS / CMOS devices and integra...Device physics research for submicron and deep submicron space microelectronics devices and integrated circuits will be described in three topics.1.Thin film submicron and deep submicron SOS / CMOS devices and integrated circuits.2.Deep submicron LDD CMOS devices and integrated circuits.3.C band and Ku band microwave GaAs MESFET and III-V compound hetrojunction HEM T and HBT devices and integrated circuits.展开更多
The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with ...The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.展开更多
Approximation techniques are useful for implementing pattern recognizers, communication decoders and sensory processing algorithms where computational precision is not critical to achieve the desired system level perf...Approximation techniques are useful for implementing pattern recognizers, communication decoders and sensory processing algorithms where computational precision is not critical to achieve the desired system level performance. In our previous work, we had proposed margin propagation (MP) as an efficient piece-wise linear (PWL) approximation technique to a log-sum-exp function and had demonstrated its advantages for implementing probabilistic decoders. In this paper, we present a systematic and a generalized approach for synthesizing analog piecewise-linear (PWL) computing circuits using the MP principle. MP circuits use only addition, subtraction and threshold operations and hence can be implemented using universal conservation principles like the Kirchoff's current law. Thus, unlike the conventional translinear CMOS current-mode circuits, the operation of the MP circuits are functionally similar in weak, moderate and strong inversion regimes of the MOS transistor making the design approach bias-scalable. This paper presents measured results from MP circuits prototyped in a 0.5μm standard CMOS process verifying the bias-scalable property. As an example, we apply the synthesis approach towards designing linear classifiers and verify its performance using measured results.展开更多
文摘Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and performance of different types of protective textiles.Three distinct structures of 3D woven textiles and 2D plain weave fabric made with similar high-performance fiber and areal density were designed and manufactured to be tested.Two samples,one composed of a single and the other of 4-panel layers,from each fabric type structure,were prepared,and tested against stabbing at[0○],[22.5○],and[45○]angle of incidence.A new stabbing experimental setup that entertained testing of the specimens at various angles of incidence was engineered and utilized.The stabbing bench is also equipped with magnetic sensors and a UK Home Office Scientific Development Branch(HOSDB)/P1/B sharpness engineered knives to measure the impact velocity and exerted impact energy respectively.A silicon compound was utilized to imprint the Back Face Signature(BFS)on the backing material after every specimen test.Each silicon print was then scanned,digitized,and precisely measured to evaluate the stab response and performance of the specimen based on different performance variables,including Depth of Trauma(DOT),Depth of Penetration(DOP),and Length of Penetration(LOP).Besides,the post-impact surface failure modes of the fabrics were also measured using Image software and analyzed at the microscale level.The results show stab angle of incidence greatly influences the stab response and performance of protective textiles.The outcome of the study could provide not only valuable insights into understanding the stab response and capabilities of protective textiles under different angle of incidence,but also provide valuable information for protective textile manufacturer,armor developer and stab testing and standardizing organizations to consider the angle of incidence while developing,testing,optimizing,and using protective textiles in various applications.
文摘In recent years,several failures of double circuit transmission line on the same tower due to lightning were happened in Beijing power grid.Although it can be reclosed successful,the lightning strike caused a grave threat to the power grid security.The cause of the accident and the accident process were studied for the sake of further understanding of the impact of lightning on power grid.As an example,110 kV double circuit transmission line(Xilong-line) was analyzed.At first,the system topology was given.Through the analysis on relay protection actions and the fault recorder data,over voltage on the insulator strings was calculated.Based on the analysis and the calculation,accident cause and the process were presented respectively.Secondly,it comes to the conclusion that the lightning failure was caused by counterattack.The wave of the lightning over voltage would spread to the not grounded neutral point of the transformers,and make the neutral protective gap breakdown,then cause freewheeling with the frequency of 50 Hz.As results of the relay protection,the double circuit transmission line all tripped out.Finally,the causes of the accident were proposed that included terrain features,large corner towers,strong thunderstorm weather and poor grounded contact of the tower.
基金Supported by the National Natural Science Foundation of China(62174092)the Open Fund of State Key Laboratory of Infrared Physics(SITP-NLIST-ZD-2023-04)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0580000)。
文摘In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize the parameters of the model in detail.By employing this model,we conducted computations to characterize the response wavelength and bandwidth of variously sized metamaterial absorbers.A comparative analysis with Finite Difference Time Domain(FDTD)simulations demonstrated a remarkable level of consistency in the results.The designed absorbers were fabricated using micro-nano fabrication processes,and were experimentally tested to demonstrate absorption rates exceeding 90%at a wavelength of 9.28μm.The predicted results are then compared with test results.The comparison reveals good consistency in two aspects of the resonance responses,thereby confirming the rationality and accuracy of this model.
文摘This paper deals with fault isolation in nonlinear analog circuits with tolerance under an insufficient number of independent voltage measurements.A neural network-based L1-norm optimization approach is proposed and utilized in locating the most likely faulty elements in nonlinear circuits.The validity of the proposed method is verified by both extensive computer simulations and practical examples.One simulation example is presented in the paper.
基金This project was supported by the National Nature Science Foundation of China(60372001)
文摘The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.
基金supported by the National Natural Science Foundation of China(61601501 61502521)
文摘Test of consistency is critical for the analytic hierarchy process(AHP) methodology. When a pairwise comparison matrix(PCM) fails the consistency test, the decision maker(DM) needs to make revisions. The state of the art focuses on changing a single entry or creating a new matrix based on the original inconsistent matrix so that the modified matrix can satisfy the consistency requirement. However, we have noticed that the reason that causes inconsistency is not only numerical inconsistency, but also logical inconsistency, which may play a more important role in the whole inconsistency. Therefore, to realize satisfactory consistency, first of all, we should change some entries that form a directed circuit to make the matrix logically consistent, and then adjust other entries within acceptable deviations to make the matrix numerically consistent while preserving most of the original comparison information. In this paper, we firstly present some definitions and theories, based on which two effective methods are provided to identify directed circuits. Four optimization models are proposed to adjust the original inconsistent matrix. Finally, illustrative examples and comparison studies show the effectiveness and feasibility of our method.
基金supported by the National Natural Science Foundation of China (61202078 61071139)the National High Technology Research and Development Program of China (863 Program)(SQ2011AA110101)
文摘The data-driven fault diagnosis methods can improve the reliability of analog circuits by using the data generated from it. The data have some characteristics, such as randomness and incompleteness, which lead to the diagnostic results being sensitive to the specific values and random noise. This paper presents a data-driven fault diagnosis method for analog circuits based on the robust competitive agglomeration (RCA), which can alleviate the incompleteness of the data by clustering with the competing process. And the robustness of the diagnostic results is enhanced by using the approach of robust statistics in RCA. A series of experiments are provided to demonstrate that RCA can classify the incomplete data with a high accuracy. The experimental results show that RCA is robust for the data needed to be classified as well as the parameters needed to be adjusted. The effectiveness of RCA in practical use is demonstrated by two analog circuits.
基金Projects(50978203,51208254)supported by the National Natural Science Foundation of ChinaProject(BK2012390)supported by Natural Science Foundation of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formulas of fluctuating wind-induced responses and equivalent static wind loads(ESWLSs)were derived based on structural dynamics and random vibration theory.The consistent coupled method(CCM)was presented to compensate the coupled term between background and resonant response.Taking the super-large cooling tower(H=215 m)of nuclear power plant in Jiangxi Province,China,which is the highest and largest in China,as the example,based on modified equivalent beam-net design method,the aero-elastic model for simultaneous pressure and vibration measurement of super-large cooling tower is firstly carried out.Then,combining wind tunnel test and CCM,the effects of self-excited force on the surface pressures and wind-induced responses are discussed,and the wind-induced response characteristics of background component,resonant component,coupled term between background and resonant response,fluctuating responses,and wind vibration coefficients are discussed.It can be concluded that wind-induced response mechanism must be understood to direct the wind resistant design for super-large cooling towers.
文摘Jiangyin Yangtze highway bridge is a suspension bridge with main span 1 385 m. The south tower pier is located on a 70 m bedrock slope with bedding plane of strata tipping to the river channel and several weak intercalated layers. The stability of the tower pier is one of the main engineering geologic problems. On the basis of investigation and survey of relevant geologic condition analyses, the geomechanical model experiments are carried out for stability study of various foundation alternatives’ advantages and disadvantages. Pile foundation has been finally adopted and constructed, and this is justified by practice.
基金Project Supported by National Development and Reform Commission(No.[2006]2709)
文摘With the growth of capacity of high voltage direct current(HVDC) transmission lines,the ratings of thyristor valves,which are one of the most critical equipments,are getting higher and higher.Verification of performance of thyristor valves particularly designed for HVDC project plays an important role in the handover of products between the manufacturer and the client.Conventional test facilities based on philosophy of direct test cannot meet the requirements for modern thyristor valves.New test facilities with high ratings are necessarily built based on philosophy of synthetic test.Over the conventional direct test circuit,the later is an economical and feasible solution with less financial investment and higher test capability.However,the equivalency between the synthetic test and the direct test should be analyzed technically in order to make sure that the condition of verification test in a synthetic test circuit should satisfy the actual operation condition of thyristor valves existing in a real HVDC project,just as in a direct test circuit.Equivalency analysis is focused in this paper,covering the scope of thyristor valves' steady state,and transient state.On the basis of the results achieved,a synthetic test circuit of 6 500 A/50 kV for operational tests of thyristor valves used for up to UHVDC project has newly been set up and already put into service in Xi'an High Voltage Apparatus Research Institute Co.,Ltd.(XIHARI),China.Some of the results have been adopted also by a new national standard of China.
文摘In the subtropical monsoon karst regions uplifted in the Quaternary, the cone karst coexists with many kind of topography, such as plains, valleys, depressions, poljes, bank slopes and terraces. This is the major difference between the distribution of the cone karst and the tower karst. The latter is observed only on plains or basins. This situation brings about the idea that there are different origins for cone karst and tower karst. Moreover, the main aspects of cone karst morphology is illustrated in this paper, through which an overall conception of the cone karst may be figured out.
文摘As a method for testing a sequential circuit efficiently, a scan design is usually used. But, since this design has some drawbacks, a non-scan testable design should be discussed. The testable design can be implemented by enhancing controllability and observability. This paper discusses a non-scan testable design for a sequential circuit by only focusing the improvement of controllability. The proposed design modifies a circuit so that all the FFs can be directly controlled by primary input lines in a test mode. Experimental results show that we can get a good testability using this method.
文摘This paper proposed an improved temperature prediction model for oil-immersed transformer.The influences of the environmental temperature and heat-sinking capability changing with temperature were considered.When calculating the heat dissipation from the transformer tank to surroundings,the average oil temperature was selected as the node value in the thermal circuit.The new thermal models will be validated with the delivery experimental data of three transformers: a 220 kV-300 MV.A unit,a 110 kV40 MV.A unit and a 220 kV-75 MV.A unit.Meanwhile,the results from the proposed model were also compared with two methods recommended in the IEC loading guide.
文摘Device physics research for submicron and deep submicron space microelectronics devices and integrated circuits will be described in three topics.1.Thin film submicron and deep submicron SOS / CMOS devices and integrated circuits.2.Deep submicron LDD CMOS devices and integrated circuits.3.C band and Ku band microwave GaAs MESFET and III-V compound hetrojunction HEM T and HBT devices and integrated circuits.
基金National Natural Science Foundation of China(61974116)。
文摘The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.
基金Supported by a Research Grant from The National Science Foundation(CCF:0728996)
文摘Approximation techniques are useful for implementing pattern recognizers, communication decoders and sensory processing algorithms where computational precision is not critical to achieve the desired system level performance. In our previous work, we had proposed margin propagation (MP) as an efficient piece-wise linear (PWL) approximation technique to a log-sum-exp function and had demonstrated its advantages for implementing probabilistic decoders. In this paper, we present a systematic and a generalized approach for synthesizing analog piecewise-linear (PWL) computing circuits using the MP principle. MP circuits use only addition, subtraction and threshold operations and hence can be implemented using universal conservation principles like the Kirchoff's current law. Thus, unlike the conventional translinear CMOS current-mode circuits, the operation of the MP circuits are functionally similar in weak, moderate and strong inversion regimes of the MOS transistor making the design approach bias-scalable. This paper presents measured results from MP circuits prototyped in a 0.5μm standard CMOS process verifying the bias-scalable property. As an example, we apply the synthesis approach towards designing linear classifiers and verify its performance using measured results.