Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the succ...Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.展开更多
The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and perf...The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and performance sta-bility across diverse environments, stringent requirements are placed on the dynamic range of its receiving system. This paper provides a detailed exposition of a field-programmable gate array (FPGA)-based automatic gain control (AGC) design for the spaceborne scatterometer. Implemented on an FPGA, the algo-rithm harnesses its parallel processing capabilities and high-speed performance to monitor the received echo signals in real time. Employing an adaptive AGC algorithm, the system gene-rates gain control codes applicable to the intermediate fre-quency variable attenuator, enabling rapid and stable adjust-ment of signal amplitudes from the intermediate frequency amplifier to an optimal range. By adopting a purely digital pro-cessing approach, experimental results demonstrate that the AGC algorithm exhibits several advantages, including fast con-vergence, strong flexibility, high precision, and outstanding sta-bility. This innovative design lays a solid foundation for the high-precision measurements of the Ocean 4A scatterometer, with potential implications for the future of spaceborne microwave scatterometers.展开更多
Mesoscale eddies are an important component of oceanic features.How to automatically identify these mesoscale eddies from available data has become an important research topic.Through careful examination of existing m...Mesoscale eddies are an important component of oceanic features.How to automatically identify these mesoscale eddies from available data has become an important research topic.Through careful examination of existing methods,we propose an improved,SSH-based automatic identification method.Using the inclusion relation of enclosed SSH contours,the mesoscale eddy boundary and core(s) can be automatically identified.The time evolution of eddies can be examined by a threshold search algorithm and a tracking algorithm based on similarity.Sea-surface height(SSH) data from Naval Research Laboratory Layered Ocean Model(NLOM) and sea-level anomaly(SLA) data from altimeter are used in the many experiments,in which different automatic identification methods are compared.Our results indicate that the improved method is able to extract the mesoscale eddy boundary more precisely,retaining the multiple-core structure.In combination with the tracking algorithm,this method can capture complete mesoscale eddy processes.It can thus provide reliable information for further study of reconstructing eddy dynamics,merging,splitting,and evolution of a multi-core structure.展开更多
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n...The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.展开更多
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ...Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.展开更多
In the present paper,a new criterion is derived to obtain the optimum fitting curve while using Cubic B-spline basis functions to remove the statistical noise in the spectroscopic data.In this criterion,firstly,smooth...In the present paper,a new criterion is derived to obtain the optimum fitting curve while using Cubic B-spline basis functions to remove the statistical noise in the spectroscopic data.In this criterion,firstly,smoothed fitting curves using Cubic B-spline basis functions are selected with the increasing knot number.Then,the best fitting curves are selected according to the value of the minimum residual sum of squares(RSS)of two adjacent fitting curves.In the case of more than one best fitting curves,the authors use Reinsch's first condition to find a better one.The minimum residual sum of squares(RSS)of fitting curve with noisy data is not recommended as the criterion to determine the best fitting curve,because this value decreases to zero as the number of selected channels increases and the minimum value gives no smoothing effect.Compared with Reinsch's method,the derived criterion is simple and enables the smoothing conditions to be determined automatically without any initial input parameter.With the derived criterion,the satisfactory result was obtained for the experimental spectroscopic data to remove the statistical noise using Cubic B-spline basis functions.展开更多
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProjects(42077267,42277174,52074164)supported by the National Natural Science Foundation of ChinaProject(2024JCCXSB01)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.
文摘The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and performance sta-bility across diverse environments, stringent requirements are placed on the dynamic range of its receiving system. This paper provides a detailed exposition of a field-programmable gate array (FPGA)-based automatic gain control (AGC) design for the spaceborne scatterometer. Implemented on an FPGA, the algo-rithm harnesses its parallel processing capabilities and high-speed performance to monitor the received echo signals in real time. Employing an adaptive AGC algorithm, the system gene-rates gain control codes applicable to the intermediate fre-quency variable attenuator, enabling rapid and stable adjust-ment of signal amplitudes from the intermediate frequency amplifier to an optimal range. By adopting a purely digital pro-cessing approach, experimental results demonstrate that the AGC algorithm exhibits several advantages, including fast con-vergence, strong flexibility, high precision, and outstanding sta-bility. This innovative design lays a solid foundation for the high-precision measurements of the Ocean 4A scatterometer, with potential implications for the future of spaceborne microwave scatterometers.
基金jointly supported by a grant from the National Natural Science Foundation of China(General Program)(41071250)Innovation Program of State Key Laboratory of Resources and Environmental Information System,Institute of Geographic SciencesNatural Resources Research,Chinese Academy of Sciences(088RA500KA)
文摘Mesoscale eddies are an important component of oceanic features.How to automatically identify these mesoscale eddies from available data has become an important research topic.Through careful examination of existing methods,we propose an improved,SSH-based automatic identification method.Using the inclusion relation of enclosed SSH contours,the mesoscale eddy boundary and core(s) can be automatically identified.The time evolution of eddies can be examined by a threshold search algorithm and a tracking algorithm based on similarity.Sea-surface height(SSH) data from Naval Research Laboratory Layered Ocean Model(NLOM) and sea-level anomaly(SLA) data from altimeter are used in the many experiments,in which different automatic identification methods are compared.Our results indicate that the improved method is able to extract the mesoscale eddy boundary more precisely,retaining the multiple-core structure.In combination with the tracking algorithm,this method can capture complete mesoscale eddy processes.It can thus provide reliable information for further study of reconstructing eddy dynamics,merging,splitting,and evolution of a multi-core structure.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation 2022M720419 to provide fund for conducting experiments。
文摘The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation under Grant No.2022M720419。
文摘Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.
基金Supported by the Science and Technology Development Fund of Macao(China)grant(No.042/2007/A3,No.003/2008/A1)partly supported by NSFC Project(No.10631080)National Key Basic Research Project of China grant(No.2004CB318000)
文摘In the present paper,a new criterion is derived to obtain the optimum fitting curve while using Cubic B-spline basis functions to remove the statistical noise in the spectroscopic data.In this criterion,firstly,smoothed fitting curves using Cubic B-spline basis functions are selected with the increasing knot number.Then,the best fitting curves are selected according to the value of the minimum residual sum of squares(RSS)of two adjacent fitting curves.In the case of more than one best fitting curves,the authors use Reinsch's first condition to find a better one.The minimum residual sum of squares(RSS)of fitting curve with noisy data is not recommended as the criterion to determine the best fitting curve,because this value decreases to zero as the number of selected channels increases and the minimum value gives no smoothing effect.Compared with Reinsch's method,the derived criterion is simple and enables the smoothing conditions to be determined automatically without any initial input parameter.With the derived criterion,the satisfactory result was obtained for the experimental spectroscopic data to remove the statistical noise using Cubic B-spline basis functions.