期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
基于动态融合注意力机制的电力负荷缺失数据填充模型
1
作者 赵冬 李亚瑞 +1 位作者 王文相 宋伟 《郑州大学学报(工学版)》 北大核心 2025年第2期111-118,共8页
为了提高电力负荷数据的缺失值填充精度,保障后续数据分析与应用的高效进行,首先,提出一种基于动态融合注意力机制的填充模型(DFAIM),该模型由注意力机制模块和动态加权融合模块构成,通过注意力机制模块的两种不同注意力机制挖掘特征与... 为了提高电力负荷数据的缺失值填充精度,保障后续数据分析与应用的高效进行,首先,提出一种基于动态融合注意力机制的填充模型(DFAIM),该模型由注意力机制模块和动态加权融合模块构成,通过注意力机制模块的两种不同注意力机制挖掘特征与时间戳之间的深层关联;其次,通过动态加权融合模块将可学习的权重赋予注意力机制模块的两个输出以得到特征表示;最后,利用特征表示来替换缺失位置的值,从而得到准确的填充结果。使用纽约市某地区的气象及负荷数据集及UCI电力负荷数据集对提出的模型进行验证,实验结果表明:相较于统计学、机器学习和深度学习填充模型,DFAIM在评价指标MAE、RMSE和MRE上均具有一定优势。 展开更多
关键词 缺失值填充 注意力机制 电力负荷 时序特征
在线阅读 下载PDF
基于CEEMDAN⁃TCN的短期风电功率预测研究
2
作者 李敖 冉华军 +2 位作者 李林蔚 王新权 高越 《现代电子技术》 北大核心 2025年第2期97-102,共6页
风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分... 风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分解和时间卷积网络的短期风电功率预测方法。首先利用自适应噪声完备集合经验模态分解对初始风电功率数据进行分解,得到多个相对稳定的子数据序列;然后将其分别作为时间卷积网络的输入,利用时间卷积网络模型进行特征提取和功率预测;最后将所有预测值进行汇总,得到最终的功率预测值。使用宁夏某地区真实风电功率数据进行验证,并与传统预测模型比较,结果表明所提方法具有较高的预测精度,可为风电功率短期预测等相关工作提供相关参考。 展开更多
关键词 短期风电功率预测 自适应噪声的完备集合经验模态分解(CEEMDAN) 时间卷积网络(TCN) 特征提取 预测精度 时间序列分析
在线阅读 下载PDF
基于改进STGCN与N-BEATS的风功率超短期预测
3
作者 程旭初 刘景霞 康荣凯 《现代电子技术》 北大核心 2025年第8期115-121,共7页
精准的风功率预测对电网调度具有重大意义,针对现有预测方法中数据特征提取不充分、输入序列过长时产生梯度消失和预测精度低的问题,提出一种基于改进时空图卷积(STGCN)与神经基扩展分析(N-BEATS)模型的组合预测模型,该方法通过充分提... 精准的风功率预测对电网调度具有重大意义,针对现有预测方法中数据特征提取不充分、输入序列过长时产生梯度消失和预测精度低的问题,提出一种基于改进时空图卷积(STGCN)与神经基扩展分析(N-BEATS)模型的组合预测模型,该方法通过充分提取数据时空特征来提高预测精度。首先,利用STGCN对多元输入序列进行深度特征提取,充分挖掘风机SCADA数据中的时空潜在关系;同时,为了进一步提高预测精度,通过构建序列分解模块与多分辨率卷积对STGCN模型进行改进,使其能够更好地适应风电数据的复杂特性;然后,神经基扩展分析(N-BEATS)新型神经网络对STGCN提取的时空信息数据进行时序关系分析,得到最终预测结果;最后,以内蒙古某风场SCADA数据为例,通过多模型对比实验与自身消融实验验证了所提组合模型策略的有效性以及对STGCN的改进效果。实验结果表明,所设计模型在预测精度上取得了显著的提升,为风电功率预测领域的研究提供了新的思路和方法。 展开更多
关键词 超短期风功率预测 时空图卷积 神经基扩展分析 序列分解 深度特征提取 图卷积网络
在线阅读 下载PDF
Kubernetes容器云的弹性伸缩方法
4
作者 李佳颖 杨泽民 +1 位作者 宋哲代 朱金荣 《电子科技》 2025年第3期32-39,共8页
Kubernetes容器云是当前流行的云计算技术,其默认的弹性伸缩方法HPA(Horizontal Pod Autoscaler)能对云原生应用进行横向扩缩容。但该方法存在以下问题:基于单一负载指标,使其难以适用于多样化云原生应用;基于当前负载进行弹性伸缩,使... Kubernetes容器云是当前流行的云计算技术,其默认的弹性伸缩方法HPA(Horizontal Pod Autoscaler)能对云原生应用进行横向扩缩容。但该方法存在以下问题:基于单一负载指标,使其难以适用于多样化云原生应用;基于当前负载进行弹性伸缩,使扩缩容过程具有明显的滞后性;基于滑动时间窗口算法进行弹性缩容,使缩容过程缓慢易造成系统资源浪费。针对上述问题,文中提出一种改进的弹性伸缩方法。设计一种动态加权融合算法将多种负载指标融合为综合负载因子,全面反映云原生应用的综合负载。提出CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)-ARIMA(Autoregressive Integrated Moving Average Model)预测模型,基于该模型的预测负载值实现预先弹性伸缩以应对突发流量。提出快速缩容与滑动时间窗口相结合的方法,在确保应用服务质量的基础上减少系统资源浪费。实验结果表明,相较于HPA机制,改进的弹性伸缩方法在应对首次突发流量时的平均响应时间缩短了336.55%,流量结束后系统资源占用减少了50%,再次遇到突发流量时能迅速扩容,平均响应时间缩短66.83%。 展开更多
关键词 云计算 容器云 Kubernetes HPA 弹性伸缩 时间序列 滑动窗口 加权融合 负载预测
在线阅读 下载PDF
基于VMD-RIME-LSTM算法的天然气负荷预测
5
作者 张凯 高伟 +3 位作者 刘晓磊 孙旭 卜跃刚 张宏喜 《区域供热》 2025年第2期51-59,106,共10页
针对某企业各用能端用能无序、多台燃气锅炉交互使用,天然气日用气负荷波动性大等问题,提出了一种变分模态分解(VMD)和霜冰优化算法(RIME)与长短期记忆神经网络(Long Short-Term Memory,LSTM)相耦合的天然气负荷预测模型。首先使用VMD... 针对某企业各用能端用能无序、多台燃气锅炉交互使用,天然气日用气负荷波动性大等问题,提出了一种变分模态分解(VMD)和霜冰优化算法(RIME)与长短期记忆神经网络(Long Short-Term Memory,LSTM)相耦合的天然气负荷预测模型。首先使用VMD对经过数据清洗的天然气负荷序列进行分解,将复杂的信号分解为若干个不同频率的模态分量(Intrinsic Mode Function,IMF);然后将各模态分量输入到经霜冰优化算法优化过的长短期记忆神经网络模型中进行预测,最后将各子序列预测结果叠加重构得到最终预测结果。实验结果表明:相比于单一长短期神经网络模型LSTM以及VMD-LSTM模型,这种VMD-RIME-LSTM模型在天然气负荷预测方面具有较好的预测精度,可为企业燃气锅炉系统实现更精确的运行管理和能源利用提供数据支撑。 展开更多
关键词 变分模态分解 霜冰优化算法 长短期记忆神经网络 天然气负荷 时序预测
在线阅读 下载PDF
基于时序分解和SARIMA⁃DSR的台区可开放容量计算方法 被引量:1
6
作者 冯隆基 楚成博 +4 位作者 方磊 钱勇 张法业 王宁 王金喜 《现代电子技术》 北大核心 2024年第2期127-132,共6页
合理地分析并准确计算台区可开放容量,能够优化配电系统的运行,提高线路利用率,保证台区配电变压器安全、经济、稳定运行。传统的可开放容量计算方法主要基于线路输电能力经验公式进行计算,未考虑高负荷运行台区的短时性及季节性,存在... 合理地分析并准确计算台区可开放容量,能够优化配电系统的运行,提高线路利用率,保证台区配电变压器安全、经济、稳定运行。传统的可开放容量计算方法主要基于线路输电能力经验公式进行计算,未考虑高负荷运行台区的短时性及季节性,存在计算准确率和普适性低的问题。因此,提出一种基于局部加权周期趋势分解算法(STL)和季节性自回归滑动平均模型(SARIMA)与动态同时率(DSR)的台区可开放容量计算方法。该方法首先利用STL将历史台区负荷数据分解为趋势项、季节项和余项;其次,根据调整的历史台区负荷数据建立SARIMA台区负荷预测模型,预测未来台区负荷的变化及负荷峰值;同时,根据台区历史负荷数据建立台区DSR准则;最后,构建SARIMA‐DSR模型,合理调整可开放容量计算方法中的配置系数,实现台区的可开放容量的准确计算。 展开更多
关键词 可开放容量 SARIMA 动态同时率 STL 时序分解 负荷预测
在线阅读 下载PDF
基于N-BEATS的能源互联网短期负荷预测 被引量:2
7
作者 尹浩然 张玲华 《电子设计工程》 2024年第11期76-81,共6页
短期负荷预测在能源互联网的规划中既占重要组成部分,又是能源系统可靠高效运行的基础。在能源互联网中能源的短期负荷预测精度问题是人们重点关注问题。N-BEATS的深度神经结构未使用时序特别组成成分,仅使用一种基于后向和前向残差链... 短期负荷预测在能源互联网的规划中既占重要组成部分,又是能源系统可靠高效运行的基础。在能源互联网中能源的短期负荷预测精度问题是人们重点关注问题。N-BEATS的深度神经结构未使用时序特别组成成分,仅使用一种基于后向和前向残差链路以及非常深的全连接层堆栈的深度神经架构。该结构具有可解释性、适用于广泛的目标域、并且训练速度快等优点。实验使用N-BEATS模型对历史负荷数据进行训练,然后对未来负荷进行短期负荷预测,取得了较高的预测精度。测得平均绝对百分比误差(eMAPE)为1.26%,平均绝对误差(eMAE)为84.238 kW,决定系数(R^(2))为0.9955,实验结果表明采用该方法的预测精度高于传统的预测方法,如在eMAPE方面相比TCN降低了0.61%。 展开更多
关键词 能源互联网 短期负荷预测 N-BEATS网络模型 深度学习 时间序列
在线阅读 下载PDF
基于ConvLSTM-LSTM的短期负荷预测方法 被引量:1
8
作者 随春光 张玲华 《电子设计工程》 2024年第10期54-58,共5页
长短时记忆(LSTM)网络和结合卷积神经网络(CNN)的CNN-LSTM预测模型由于其网络模型本身的缺陷,限制了预测精度的提高。针对以上问题,提出了一种结合卷积长短时记忆(ConvL⁃STM)网络的ConvLSTM-LSTM负荷预测模型。利用ConvLSTM网络充分提... 长短时记忆(LSTM)网络和结合卷积神经网络(CNN)的CNN-LSTM预测模型由于其网络模型本身的缺陷,限制了预测精度的提高。针对以上问题,提出了一种结合卷积长短时记忆(ConvL⁃STM)网络的ConvLSTM-LSTM负荷预测模型。利用ConvLSTM网络充分提取时序特征,将提取到的信息输入到LSTM网络中进行进一步的选择性记忆,并输出预测结果。将该模型与CNN-LSTM网络模型、LSTM网络模型、以及门控循环单元(GRU)网络模型进行了对比,结果显示所构建的Con⁃vLSTM-LSTM模型的预测效果均优于对比模型,在精度评价指标平均绝对百分比误差(MAPE)上,分别减小了1.10%、1.54%、1.91%。 展开更多
关键词 短期负荷预测 长短时记忆网络 卷积长短时记忆网络 组合预测模型 时序预测
在线阅读 下载PDF
基于最大重叠离散小波变换和深度学习的光伏功率预测 被引量:1
9
作者 马乐乐 孔小兵 +2 位作者 郭磊 刘源延 刘向杰 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期576-583,共8页
针对光伏功率时间序列的非平稳特性,提出一种基于最大重叠离散小波变换(MODWT)和长短期记忆网络(LSTM)的光伏功率组合预测模型。利用皮尔逊相关系数确定影响光伏功率的重要气象因素,基于MODWT算法对历史光伏功率序列进行分解,将选取的... 针对光伏功率时间序列的非平稳特性,提出一种基于最大重叠离散小波变换(MODWT)和长短期记忆网络(LSTM)的光伏功率组合预测模型。利用皮尔逊相关系数确定影响光伏功率的重要气象因素,基于MODWT算法对历史光伏功率序列进行分解,将选取的气象因素与分解得到的平稳子序列共同构成各个LSTM网络输入,通过汇总重构每个LSTM网络的子序列预测结果得到最终的光伏功率预测结果。从理论层面分析所建立的MODWT算法的完全重构性,并基于李雅普诺夫稳定性定理推导保证预测网络收敛的学习率范围。仿真对比结果显示,所提出的光伏功率预测模型在预测精度和鲁棒性方面具有明显优势。 展开更多
关键词 光伏功率预测 长短期记忆网络 非平稳时间序列分解 预测网络收敛性
在线阅读 下载PDF
基于GWO-GRU的光伏发电功率预测
10
作者 陈庆明 廖鸿飞 +1 位作者 孙颖楷 曾亚森 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期438-444,共7页
针对长短期记忆网络(LSTM)应用于光伏发电功率预测时存在的耗时长或精准度低的问题,提出基于灰狼算法(GWO)优化门控循环单元(GRU)的光伏发电功率预测模型。通过GWO算法优化GRU模型的超参数,以近似最优参数建立光伏发电功率预测模型。结... 针对长短期记忆网络(LSTM)应用于光伏发电功率预测时存在的耗时长或精准度低的问题,提出基于灰狼算法(GWO)优化门控循环单元(GRU)的光伏发电功率预测模型。通过GWO算法优化GRU模型的超参数,以近似最优参数建立光伏发电功率预测模型。结果表明,长时功率预测时,GWO-GRU模型的均方根误差更低、拟合系数更高、耗时更少,比传统LSTM模型的平均绝对误差降低10.20%;短时功率预测时,GWO-GRU模型在3种典型天气条件下不仅预测的平均误差最低、稳定性最强,而且比GWO-LSTM模型的平均用时节省17.24%。不同时长的功率预测表明,GWO-GRU相对于LSTM光伏功率预测效果更佳。 展开更多
关键词 光伏发电 功率预测 门控循环单元 灰狼算法 长短期记忆网络 时间序列
在线阅读 下载PDF
数据驱动的深井超长工作面支架载荷区域特征分析与分区预测 被引量:1
11
作者 巩师鑫 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第S01期1-12,共12页
实现液压支架载荷预测分析对于及时改善支架适应性和实现安全支护具有重要作用,需要高质量、大数量的支架载荷时序数据和有效的预测方法作为支撑。然而,深部超长工作面上覆岩层应力环境和垮落步距的非同质同步引发工作面不同区域支架载... 实现液压支架载荷预测分析对于及时改善支架适应性和实现安全支护具有重要作用,需要高质量、大数量的支架载荷时序数据和有效的预测方法作为支撑。然而,深部超长工作面上覆岩层应力环境和垮落步距的非同质同步引发工作面不同区域支架载荷差异化。因此,针对深井超长工作面顶板覆岩长期循环动载作用和分区破断造成工作面不同区域载荷差异明显以及无法实现动态区域更新下的液压支架载荷预测的问题,提出了一种数据驱动的深井超长工作面支架载荷区域特征分析与分区预测方法。首先,在获取工作面液压支架载荷数据的基础上,利用MeanShift聚类算法实现工作面区域动态划分,并分析深井超长工作面不同区域的支架载荷变化特征;然后,提出一种考虑多维时序数据特征和注意力机制LSTM预测方法,构建支架载荷一次性多输入多输出预测框架,实现了预测算法精度和输入输出特征结构的协同设计;最后,基于前述工作面区域划分结果,建立工作面区域化液压支架群组载荷预测模型,实现了综采工作面液压支架群组载荷时序数据循环训练和高精度预测。该方法通过考虑工作面载荷区域分布特征,建立多输入多输出特征工程,可实现基于工作面区域动态更新的液压支架群组载荷预测,能够为后续分析工作面矿压显现规律,超前适应采场环境变化和指导工作面正常回采提供依据。 展开更多
关键词 工作面 液压支架 载荷预测 时间序列数据 区域划分
在线阅读 下载PDF
基于扩大周期的电力负荷预测模型 被引量:1
12
作者 张海芳 何清龙 张林 《电子科技》 2024年第2期1-5,共5页
针对现有电力负荷预测模型依赖近期数据导致预测结果偏离时间序列真实情况的问题,文中提出了基于扩大周期信息的电力负荷预测模型。将预处理完的电力负荷时间序列按照同一时刻不同天进行处理,在此基础上分别利用ARIMA(Autoregressive In... 针对现有电力负荷预测模型依赖近期数据导致预测结果偏离时间序列真实情况的问题,文中提出了基于扩大周期信息的电力负荷预测模型。将预处理完的电力负荷时间序列按照同一时刻不同天进行处理,在此基础上分别利用ARIMA(Autoregressive Integrated Moving Average Model)模型和LSTM(Long Short-Term Memory Network)模型进行建模分析,并采用3种评价指标评估模型的预测表现。预测结果表明,扩大周期信息构建的ARIMA模型的3种评价指标都比传统ARIMA模型低,对应的RMSE(Root Mean Square Error)、MAE(Mean Absolute Error)和MAPE(Mean Absolute Percentage Error)分别为32 434.114 8、5 828.390 9和0.025 2;扩大周期信息的LSTM模型也比原始LSTM模型低,对应的RMSE、MAE和MAPE分别为13 520.497 4、9 298.352 6和0.091 4。 展开更多
关键词 电力系统 负荷预测 ARIMA LSTM 扩大周期 时间序列 中短期预测 评价指标
在线阅读 下载PDF
基于时间序列聚类算法优化下的多变量短期负荷预测模型研究 被引量:1
13
作者 徐洁 《能源科技》 2024年第2期20-23,共4页
为提高短期负荷预测的精度问题,针对短期负荷预测的特点,采用了对海量序列数做数据增强聚类操作,和外部输入变量(天气因素)并行处理,提出了基于时间序列聚类算法优化下的多变量短期负荷预测模型,并对某电力售电公司进行了实际操作。结... 为提高短期负荷预测的精度问题,针对短期负荷预测的特点,采用了对海量序列数做数据增强聚类操作,和外部输入变量(天气因素)并行处理,提出了基于时间序列聚类算法优化下的多变量短期负荷预测模型,并对某电力售电公司进行了实际操作。结果表明:该方法大幅提升了模型的预测精度和实用能力。 展开更多
关键词 短期负荷预测 时间序列 聚类分析 天气
在线阅读 下载PDF
民用建筑逐时负荷的理论分析
14
作者 朱亮亮 阳玉云 《建筑电气》 2024年第3期24-28,4,共6页
从复杂多变的实际用电负荷曲线分析入手,基于电能损耗,提出用特定时段内的平均负荷代替实际负荷的等效分析思路,并利用中心极限定理得出不同类型、不同情况下设备平均功率近似趋于平稳所需要的稳态时间。进一步讨论稳态时间对分段时间... 从复杂多变的实际用电负荷曲线分析入手,基于电能损耗,提出用特定时段内的平均负荷代替实际负荷的等效分析思路,并利用中心极限定理得出不同类型、不同情况下设备平均功率近似趋于平稳所需要的稳态时间。进一步讨论稳态时间对分段时间宽度的影响,定性分析逐时负荷在不同时间、不同配电点的波动,为下一步逐时负荷计算的数据分析提供理论依据。 展开更多
关键词 中心极限定理 正态分布 平均系数 稳态时间 稳态平均功率 分段时间宽度 逐时负荷 负荷预测
在线阅读 下载PDF
基于季节性因素的地区负荷预测与调控策略分析
15
作者 黄安平 周娟 +1 位作者 程涛 何祥针 《集成电路应用》 2024年第7期346-347,共2页
阐述季节性变化的地区负荷预测与调控策略。利用时间序列分析方法对历史负荷数据进行处理,基于计算机技术,构建地区电力负荷预测模型,借助人工智能技术,实现负荷平衡的优化。
关键词 时间序列分析 电力负荷预测 负荷调控策略
在线阅读 下载PDF
电力调度控制中的数字通信应用
16
作者 刘文宗 《通信电源技术》 2024年第17期86-88,共3页
文章探讨了数字通信技术在电力调度控制系统中的应用。首先,概述电力调度控制系统的功能和组成,分析传统电力调度系统存在的问题和局限性。其次,详细讨论数字通信在实时数据采集与传输、远程监控与故障检测、负荷预测与优化调度以及安... 文章探讨了数字通信技术在电力调度控制系统中的应用。首先,概述电力调度控制系统的功能和组成,分析传统电力调度系统存在的问题和局限性。其次,详细讨论数字通信在实时数据采集与传输、远程监控与故障检测、负荷预测与优化调度以及安全与可靠性增强方面的应用。最后,分析数字通信技术对电力调度控制系统性能的影响,包括数据传输速度和精确度的提升、系统响应时间的改善及安全性和可靠性的增强。 展开更多
关键词 电力调度控制 数字通信 实时数据采集 远程监控 负荷预测
在线阅读 下载PDF
基于经验模式分解和时间序列分析的风电场风速预测 被引量:14
17
作者 刘兴杰 米增强 +2 位作者 杨奇逊 樊小伟 吴俊华 《太阳能学报》 EI CAS CSCD 北大核心 2010年第8期1037-1041,共5页
针对风速时间序列的非线性和非平稳性,该文提出将经验模式分解(Empirical Mode Decomposition,EMD)和时间序列分析方法相结合对风电场风速进行预测,以探寻更为准确有效地风速预测方法。首先,运用EMD对原始风速序列进行预处理,将其自适... 针对风速时间序列的非线性和非平稳性,该文提出将经验模式分解(Empirical Mode Decomposition,EMD)和时间序列分析方法相结合对风电场风速进行预测,以探寻更为准确有效地风速预测方法。首先,运用EMD对原始风速序列进行预处理,将其自适应地分解成一系列不同尺度的模式分量,这样能够突出原始风速时间序列不同的局部特征信息;然后,分析各分量,根据其变化规律,采用时间序列分析法分别建立相应的模型并进行预测,这样既简化了建立的模型又降低了预测的成本;最后将各分量的预测值叠加得到风速序列的预测值。算例结果表明,该方法大幅提高了风速预测精度。 展开更多
关键词 风电场 风速 预测 经验模式分解 时间序列
在线阅读 下载PDF
基于RBF神经网络的时间序列交叉供热负荷预报研究 被引量:5
18
作者 陈烈 张永明 +2 位作者 齐维贵 邓盛川 李娟 《电子学报》 EI CAS CSCD 北大核心 2009年第11期2444-2447,共4页
针对供热过程的特点及节能控制的需要,提出基于RBF神经网络的时间序列交叉供热负荷预报法.首先对现场实测的供热负荷数据进行预处理,取得建立预报模型所需的负荷样本阵列;随后,应用自相关法求取RBF神经网络的输入维数,并分别建立时间序... 针对供热过程的特点及节能控制的需要,提出基于RBF神经网络的时间序列交叉供热负荷预报法.首先对现场实测的供热负荷数据进行预处理,取得建立预报模型所需的负荷样本阵列;随后,应用自相关法求取RBF神经网络的输入维数,并分别建立时间序列的横向及纵向预报模型;最后用最小二乘法求出横向与纵向负荷预报的交叉权系数,得到RBF神经网络的时间序列交叉预报模型.仿真结果表明,RBF神经网络交叉负荷预报的精度高于横向负荷预报及纵向负荷预报,其实时性要优于BP神经网络交叉负荷预报. 展开更多
关键词 供热过程 负荷预报 RBF神经网络 时间序列交叉
在线阅读 下载PDF
应用小波-人工神经网络组合模型研究电力负荷预报 被引量:10
19
作者 王文圣 朱聪 丁晶 《水电能源科学》 2004年第2期68-70,共3页
针对负荷时间序列的非线性和多时间尺度特性,提出了将小波分析与人工神经网络相结合进行负荷预报的方法——小波-人工神经网络组合模型。该模型吸取了小波分析的多分辨功能和人工神经网络的非线性逼近能力。以月、日平均负荷预报为例对... 针对负荷时间序列的非线性和多时间尺度特性,提出了将小波分析与人工神经网络相结合进行负荷预报的方法——小波-人工神经网络组合模型。该模型吸取了小波分析的多分辨功能和人工神经网络的非线性逼近能力。以月、日平均负荷预报为例对模型进行验证,结果表明:该模型的拟合、检验精度较高。 展开更多
关键词 小坡分析 人工神经网络 组合模型 负荷预报
在线阅读 下载PDF
基于影响因素分析和小波神经网络的供热量预测 被引量:6
20
作者 王美萍 张佼 田琦 《暖通空调》 北大核心 2014年第3期113-118,共6页
基于统计方法分析了实测时间序列中各影响因素与供热量的相关性。应用小波分析有效提取序列中的局部信息,与神经网络相结合,可分析蕴藏在系统中的非线性动态特性。建立了小波神经网络预测模型,把影响供热量的因素分为与其相关性较大(系... 基于统计方法分析了实测时间序列中各影响因素与供热量的相关性。应用小波分析有效提取序列中的局部信息,与神经网络相结合,可分析蕴藏在系统中的非线性动态特性。建立了小波神经网络预测模型,把影响供热量的因素分为与其相关性较大(系统循环流量、供水温度和回水压力)和较小(供、回水压力和回水温度)的2组数据,预测结果证实与供热量相关性较大的1组影响因素的拟合程度比相关性小的高。就预测结果的准确性与BP神经网络结构进行了比较。结果表明,基于影响因素分析和梯度修正的小波神经网络供热量预测方法具有良好的动态特性、较强的泛化能力和较高的预测精度,适用于系统供热量的短期预测。 展开更多
关键词 影响因素 小波神经网络 供热量预测 时间序列 动态特性 泛化能力 预测精度
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部