According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in...According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method.展开更多
The main objectives were to (1) calculate the total volatile organic compounds (TVOCs) inhalation dose, (2) analyze the proportions of human’s inhaled contaminant dose from different sources, and (3) present a newly ...The main objectives were to (1) calculate the total volatile organic compounds (TVOCs) inhalation dose, (2) analyze the proportions of human’s inhaled contaminant dose from different sources, and (3) present a newly defined ratio of relative inhalation dose level (RIDL) to assess indoor air quality (IAQ). A user defined function based on CFD (computational fluid dynamics) was developed, which integrated human motion model with TVOCs emission model in a high sidewall air supply ventilation mode. Based on simulation results of 10 cases, it is shown that the spatial concentration distribution of TVOCs is affected by human motion. TVOCs diffusion characteristic of building material is the most effective way to impact the TVOCs inhalation dose. From the RIDL index, case A-2 has the most serious IAQ problem, while case D-1 is of the best IAQ.展开更多
基金Project(51074027)supported by the National Natural Science Foundation of China
文摘According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method.
基金Projects(2006BAJ02A08, 2006BAJ02A05) supported by the National Science and Technology Pillar Program Project during the 11th Five-Year Plan PeriodProject(2007-209) supported by the Excellent Youth Teacher of Ministry of Education of China
文摘The main objectives were to (1) calculate the total volatile organic compounds (TVOCs) inhalation dose, (2) analyze the proportions of human’s inhaled contaminant dose from different sources, and (3) present a newly defined ratio of relative inhalation dose level (RIDL) to assess indoor air quality (IAQ). A user defined function based on CFD (computational fluid dynamics) was developed, which integrated human motion model with TVOCs emission model in a high sidewall air supply ventilation mode. Based on simulation results of 10 cases, it is shown that the spatial concentration distribution of TVOCs is affected by human motion. TVOCs diffusion characteristic of building material is the most effective way to impact the TVOCs inhalation dose. From the RIDL index, case A-2 has the most serious IAQ problem, while case D-1 is of the best IAQ.