短期电力负荷预测有助于维持发电端和用电端的动态平衡,保障电力系统稳定且高效地运行。分布式能源的大规模并网以及气象和节假日等短期因素的影响,使得负荷序列呈现明显的波动性和非线性。为此,该文提出基于花授粉算法(flower pollinat...短期电力负荷预测有助于维持发电端和用电端的动态平衡,保障电力系统稳定且高效地运行。分布式能源的大规模并网以及气象和节假日等短期因素的影响,使得负荷序列呈现明显的波动性和非线性。为此,该文提出基于花授粉算法(flower pollination algorithm,FPA)优化变分模态分解(variational mode decomposition,VMD)和双向长短时记忆(bidirectional long and short time memory,BiLSTM)神经网络的新型两阶段短期电力负荷预测方法。第一阶段首先提出了一种关于分解损失的VMD评价标准,并采用FPA来寻找该标准下分解参数的最优组合,从而降低了经验设置参数的随机性并且减少了分解过程中的信号损失,提高了分解质量;其次针对分解所得的每个子序列分别建立具备双向处理和长期记忆的BiLSTM神经网络,从而可以更好地挖掘负荷数据的过去和未来的深度时序特征。第二阶段综合考虑模态分量以及气象和星期类型等短期因素的影响,建立基于BiLSTM神经网络的误差纠正模型,用以挖掘误差中所包含的隐含信息,从而降低了模型的固有误差。将该文方法应用于美国南部某地区的负荷数据集,最终的平均绝对误差(mean absolute error,MAE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(root mean square error,RMSE)以及R2分别为108.03、1.19%、146.48以及0.9812。随后在冀北电网某供电公司的实际应用中,再次证明了该方法在区域性短期电力负荷预测中的有效性。展开更多
为了降低花朵授粉算法(FPA)重复探索的情况,并提高算法的种群多样性和空间搜索能力,提出一种基于神经网络优化的花朵授粉算法(NNFPA)。设定自适应控制因子,从而动态地切换全局与局部搜索;利用多方信息的全局搜索策略提高算法收敛速度并...为了降低花朵授粉算法(FPA)重复探索的情况,并提高算法的种群多样性和空间搜索能力,提出一种基于神经网络优化的花朵授粉算法(NNFPA)。设定自适应控制因子,从而动态地切换全局与局部搜索;利用多方信息的全局搜索策略提高算法收敛速度并维持花粉种群的多样性,同时减少在算法迭代后期种群对社会属性的依赖;基于神经网络的局部搜索策略让算法具有记忆功能,这样算法就能具有稳定搜索策略,从而降低算法的不确定性,使它能更充分地探索解空间。选取9个常规测试函数与CEC2014测试集中的部分函数进行仿真实验,得到的结果表明:与标准FPA以及变种算法HSFPA(FPA based on Hybrid Strategy)相比,NNFPA在所选测试函数上具有较高的搜索精度和收敛速度。可见NNFPA具有更好的寻优能力。展开更多
文摘短期电力负荷预测有助于维持发电端和用电端的动态平衡,保障电力系统稳定且高效地运行。分布式能源的大规模并网以及气象和节假日等短期因素的影响,使得负荷序列呈现明显的波动性和非线性。为此,该文提出基于花授粉算法(flower pollination algorithm,FPA)优化变分模态分解(variational mode decomposition,VMD)和双向长短时记忆(bidirectional long and short time memory,BiLSTM)神经网络的新型两阶段短期电力负荷预测方法。第一阶段首先提出了一种关于分解损失的VMD评价标准,并采用FPA来寻找该标准下分解参数的最优组合,从而降低了经验设置参数的随机性并且减少了分解过程中的信号损失,提高了分解质量;其次针对分解所得的每个子序列分别建立具备双向处理和长期记忆的BiLSTM神经网络,从而可以更好地挖掘负荷数据的过去和未来的深度时序特征。第二阶段综合考虑模态分量以及气象和星期类型等短期因素的影响,建立基于BiLSTM神经网络的误差纠正模型,用以挖掘误差中所包含的隐含信息,从而降低了模型的固有误差。将该文方法应用于美国南部某地区的负荷数据集,最终的平均绝对误差(mean absolute error,MAE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(root mean square error,RMSE)以及R2分别为108.03、1.19%、146.48以及0.9812。随后在冀北电网某供电公司的实际应用中,再次证明了该方法在区域性短期电力负荷预测中的有效性。
文摘为了降低花朵授粉算法(FPA)重复探索的情况,并提高算法的种群多样性和空间搜索能力,提出一种基于神经网络优化的花朵授粉算法(NNFPA)。设定自适应控制因子,从而动态地切换全局与局部搜索;利用多方信息的全局搜索策略提高算法收敛速度并维持花粉种群的多样性,同时减少在算法迭代后期种群对社会属性的依赖;基于神经网络的局部搜索策略让算法具有记忆功能,这样算法就能具有稳定搜索策略,从而降低算法的不确定性,使它能更充分地探索解空间。选取9个常规测试函数与CEC2014测试集中的部分函数进行仿真实验,得到的结果表明:与标准FPA以及变种算法HSFPA(FPA based on Hybrid Strategy)相比,NNFPA在所选测试函数上具有较高的搜索精度和收敛速度。可见NNFPA具有更好的寻优能力。