Using the ultra-low permeability reservoirs in the L block of the Jiangsu oilfield as an example,a series of experiments,including slim tube displacement experiments of CO_(2)-oil system,injection capacity experiments...Using the ultra-low permeability reservoirs in the L block of the Jiangsu oilfield as an example,a series of experiments,including slim tube displacement experiments of CO_(2)-oil system,injection capacity experiments,and high-temperature,high-pressure online nuclear magnetic resonance(NMR)displacement experiments,are conducted to reveal the oil/gas mass transfer pattern and oil production mechanisms during CO_(2) flooding in ultra-low permeability reservoirs.The impacts of CO_(2) storage pore range and miscibility on oil production and CO_(2) storage characteristics during CO_(2) flooding are clarified.The CO_(2) flooding process is divided into three stages:oil displacement stage by CO_(2),CO_(2) breakthrough stage,CO_(2) extraction stage.Crude oil expansion and viscosity reduction are the main mechanisms for improving recovery in the CO_(2) displacement stage.After CO_(2) breakthrough,the extraction of light components from the crude oil further enhances oil recovery.During CO_(2) flooding,the contribution of crude oil in large pores to the enhanced recovery exceeds 46%,while crude oil in medium pores serves as a reserve for incremental recovery.After CO_(2) breakthrough,a small portion of the crude oil is extracted and carried into nano-scale pores by CO_(2),becoming residual oil that is hard to recover.As the miscibility increases,the CO_(2) front moves more stably and sweeps a larger area,leading to increased CO_(2) storage range and volume.The CO_(2) full-storage stage contributes the most to the overall CO_(2) storage volume.In the CO_(2) escape stage,the storage mechanism involves partial in-situ storage of crude oil within the initial pore range and the CO_(2) carrying crude oil into smaller pores to increase the volume of stored CO_(2).In the CO_(2) leakage stage,as crude oil is produced,a significant amount of CO_(2) leaks out,causing a sharp decline in the storage efficiency.展开更多
There are various issues for CO_(2)flooding and storage in Shengli Oilfield,which are characterized by low light hydrocarbon content of oil and high miscible pressure,strong reservoir heterogeneity and low sweep effic...There are various issues for CO_(2)flooding and storage in Shengli Oilfield,which are characterized by low light hydrocarbon content of oil and high miscible pressure,strong reservoir heterogeneity and low sweep efficiency,gas channeling and difficult whole-process control.Through laboratory experiments,technical research and field practice,the theory and technology of CO_(2)high pressure miscible flooding and storage are established.By increasing the formation pressure to 1.2 times the minimum miscible pressure,the miscibility of the medium-heavy components can be improved,the production percentage of oil in small pores can be increased,the displacing front developed evenly,and the swept volume expanded.Rapid high-pressure miscibility is realized through advanced pressure flooding and energy replenishment,and technologies of cascade water-alternating-gas(WAG),injection and production coupling and multistage chemical plugging are used for dynamic control of flow resistance,so as to obtain the optimum of oil recovery and CO_(2)storage factor.The research results have been applied to the Gao89-Fan142 in carbon capture,utilization and storage(CCUS)demonstration site,where the daily oil production of the block has increased from 254.6 t to 358.2 t,and the recovery degree is expected to increase by 11.6 percentage points in 15 years,providing theoretical and technical support for the large-scale development of CCUS.展开更多
This paper systematically presents the established technologies and field applications with respect to research and engineering practice of CO_(2) capture,enhanced oil recovery(EOR),and storage technology in Jilin Oil...This paper systematically presents the established technologies and field applications with respect to research and engineering practice of CO_(2) capture,enhanced oil recovery(EOR),and storage technology in Jilin Oilfield,NE China,and depicts the available series of supporting technologies across the industry chain.Through simulation calculation+pilot test+field application,the adaptability of the technology for capturing CO_(2) with different concentrations in oilfields was confirmed.The low energy-consumption,activated N-methyl diethanolamine(MDEA)decarburization technology based on a new activator was developed,and the operation mode of CO_(2) gas-phase transportation through trunk pipeline network,supercritical injection at wellhead,and produced gas-liquid separated transportation was established.According to different gas source conditions,liquid,supercritical phase,high-pressure dense phase pressurization technologies and facilities were applied to form the downhole injection processes(e.g.gas-tight tubing and coiled tubing)and supporting anti-corrosion and anti-blocking techniques.In the practice of oil displacement,the oil recovery technologies(e.g.conical water-alternating-gas injection,CO_(2) foam flooding,and high gas-oil ratio CO_(2) flooding)and produced fluid processing technologies were developed.Through numerical simulation and field tests,three kinds of CO_(2) cyclic injection technologies(i.e.direct injection,injection after separation and purification,and hybrid injection)were formed,and a 10×10^(4) m^(3)/d cyclic injection station was constructed to achieve"zero emission"of associated gas.The CO_(2) storage safety monitoring technology of carbon flux,fluid composition and carbon isotopic composition was formed.The whole-process anti-corrosion technology with anticorrosive agents supplemented by anticorrosive materials was established.An integrated demonstration area of CO_(2) capture,flooding and storage with high efficiency and low energy-consumption has been built,with a cumulative oil increment of 32×10^(4) t and a CO_(2) storage volume of 250×10^(4) t.展开更多
基金Supported by the National Natural Science Foundation of China(52274053)Natural Science Foundation of Beijing(3232028).
文摘Using the ultra-low permeability reservoirs in the L block of the Jiangsu oilfield as an example,a series of experiments,including slim tube displacement experiments of CO_(2)-oil system,injection capacity experiments,and high-temperature,high-pressure online nuclear magnetic resonance(NMR)displacement experiments,are conducted to reveal the oil/gas mass transfer pattern and oil production mechanisms during CO_(2) flooding in ultra-low permeability reservoirs.The impacts of CO_(2) storage pore range and miscibility on oil production and CO_(2) storage characteristics during CO_(2) flooding are clarified.The CO_(2) flooding process is divided into three stages:oil displacement stage by CO_(2),CO_(2) breakthrough stage,CO_(2) extraction stage.Crude oil expansion and viscosity reduction are the main mechanisms for improving recovery in the CO_(2) displacement stage.After CO_(2) breakthrough,the extraction of light components from the crude oil further enhances oil recovery.During CO_(2) flooding,the contribution of crude oil in large pores to the enhanced recovery exceeds 46%,while crude oil in medium pores serves as a reserve for incremental recovery.After CO_(2) breakthrough,a small portion of the crude oil is extracted and carried into nano-scale pores by CO_(2),becoming residual oil that is hard to recover.As the miscibility increases,the CO_(2) front moves more stably and sweeps a larger area,leading to increased CO_(2) storage range and volume.The CO_(2) full-storage stage contributes the most to the overall CO_(2) storage volume.In the CO_(2) escape stage,the storage mechanism involves partial in-situ storage of crude oil within the initial pore range and the CO_(2) carrying crude oil into smaller pores to increase the volume of stored CO_(2).In the CO_(2) leakage stage,as crude oil is produced,a significant amount of CO_(2) leaks out,causing a sharp decline in the storage efficiency.
基金Supported by the Sinopec"Ten Dragon"Major ProjectKey Research Projects of Sinopec(P22180)。
文摘There are various issues for CO_(2)flooding and storage in Shengli Oilfield,which are characterized by low light hydrocarbon content of oil and high miscible pressure,strong reservoir heterogeneity and low sweep efficiency,gas channeling and difficult whole-process control.Through laboratory experiments,technical research and field practice,the theory and technology of CO_(2)high pressure miscible flooding and storage are established.By increasing the formation pressure to 1.2 times the minimum miscible pressure,the miscibility of the medium-heavy components can be improved,the production percentage of oil in small pores can be increased,the displacing front developed evenly,and the swept volume expanded.Rapid high-pressure miscibility is realized through advanced pressure flooding and energy replenishment,and technologies of cascade water-alternating-gas(WAG),injection and production coupling and multistage chemical plugging are used for dynamic control of flow resistance,so as to obtain the optimum of oil recovery and CO_(2)storage factor.The research results have been applied to the Gao89-Fan142 in carbon capture,utilization and storage(CCUS)demonstration site,where the daily oil production of the block has increased from 254.6 t to 358.2 t,and the recovery degree is expected to increase by 11.6 percentage points in 15 years,providing theoretical and technical support for the large-scale development of CCUS.
基金Supported by China National Science and Technology Major Project(2016ZX05016-002)the PetroChina Science and Technology Fund Program(2021ZZ01-04)。
文摘This paper systematically presents the established technologies and field applications with respect to research and engineering practice of CO_(2) capture,enhanced oil recovery(EOR),and storage technology in Jilin Oilfield,NE China,and depicts the available series of supporting technologies across the industry chain.Through simulation calculation+pilot test+field application,the adaptability of the technology for capturing CO_(2) with different concentrations in oilfields was confirmed.The low energy-consumption,activated N-methyl diethanolamine(MDEA)decarburization technology based on a new activator was developed,and the operation mode of CO_(2) gas-phase transportation through trunk pipeline network,supercritical injection at wellhead,and produced gas-liquid separated transportation was established.According to different gas source conditions,liquid,supercritical phase,high-pressure dense phase pressurization technologies and facilities were applied to form the downhole injection processes(e.g.gas-tight tubing and coiled tubing)and supporting anti-corrosion and anti-blocking techniques.In the practice of oil displacement,the oil recovery technologies(e.g.conical water-alternating-gas injection,CO_(2) foam flooding,and high gas-oil ratio CO_(2) flooding)and produced fluid processing technologies were developed.Through numerical simulation and field tests,three kinds of CO_(2) cyclic injection technologies(i.e.direct injection,injection after separation and purification,and hybrid injection)were formed,and a 10×10^(4) m^(3)/d cyclic injection station was constructed to achieve"zero emission"of associated gas.The CO_(2) storage safety monitoring technology of carbon flux,fluid composition and carbon isotopic composition was formed.The whole-process anti-corrosion technology with anticorrosive agents supplemented by anticorrosive materials was established.An integrated demonstration area of CO_(2) capture,flooding and storage with high efficiency and low energy-consumption has been built,with a cumulative oil increment of 32×10^(4) t and a CO_(2) storage volume of 250×10^(4) t.