Plasma flow control(PFC) is a promising active flow control method with its unique advantages including the absence of moving components, fast response, easy implementation, and stable operation. The effectiveness o...Plasma flow control(PFC) is a promising active flow control method with its unique advantages including the absence of moving components, fast response, easy implementation, and stable operation. The effectiveness of plasma flow control by microsecond dielectric barrier discharge(μs-DBD), and by nanosecond dielectric barrier discharge(NS-DBD) are compared through the wind tunnel tests, showing a similar performance between μs-DBD and NS-DBD. Furthermore, theμs-DBD is implemented on an unmanned aerial vehicle(UAV), which is a scaled model of a newly developed amphibious plane. The wingspan of the model is 2.87 m, and the airspeed is no less than 30 m/s. The flight data, static pressure data,and Tufts images are recorded and analyzed in detail. Results of the flight test show that the μs-DBD works well on board without affecting the normal operation of the UAV model. When the actuators are turned on, the stall angle and maximum lift coefficient can be improved by 1.3° and 10.4%, and the static pressure at the leading edge of the wing can be reduced effectively in a proper range of angle of attack, which shows the ability of μs-DBD to act as plasma slats. The rolling moment produced by left-side μs-DBD actuation is greater than that produced by the maximum deflection of ailerons,which indicates the potential of μs-DBD to act as plasma ailerons. The results verify the feasibility and efficacy of μs-DBD plasma flow control in a real flight and lay the foundation for the full-sized airplane application.展开更多
The fault diagnosis and accommodation strategy for a class of linear parameter-varying (LPV) systems were investigated. A fast adaptive fault estimation (FAFE) algorithm for LPV systems module, based on an adaptive ob...The fault diagnosis and accommodation strategy for a class of linear parameter-varying (LPV) systems were investigated. A fast adaptive fault estimation (FAFE) algorithm for LPV systems module, based on an adaptive observer, proposed to enhance the performance of fault estimation including rapidity and accuracy. Then, the obtained fault estimate was used to construct the fault tolerant control (FTC) law. The design method was formulated as a convex linear matrix inequalities (LMIs) optimization problem. Once the faults are estimated, the fault tolerant controller is implemented as a dynamic output feedback controller. This controller can compensate for the effect of the faults by stabilizing the closed-loop systems. Finally, a helicopter model in a vertical flight with actuator fault was used to the effectiveness of the proposed approach.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51336011 and 51607188)the China Postdoctoral Science Foundation(Grant No.2014M562446)the PhD Research Startup Foundation of Xi’an University of Technology(Grant No.256081802)
文摘Plasma flow control(PFC) is a promising active flow control method with its unique advantages including the absence of moving components, fast response, easy implementation, and stable operation. The effectiveness of plasma flow control by microsecond dielectric barrier discharge(μs-DBD), and by nanosecond dielectric barrier discharge(NS-DBD) are compared through the wind tunnel tests, showing a similar performance between μs-DBD and NS-DBD. Furthermore, theμs-DBD is implemented on an unmanned aerial vehicle(UAV), which is a scaled model of a newly developed amphibious plane. The wingspan of the model is 2.87 m, and the airspeed is no less than 30 m/s. The flight data, static pressure data,and Tufts images are recorded and analyzed in detail. Results of the flight test show that the μs-DBD works well on board without affecting the normal operation of the UAV model. When the actuators are turned on, the stall angle and maximum lift coefficient can be improved by 1.3° and 10.4%, and the static pressure at the leading edge of the wing can be reduced effectively in a proper range of angle of attack, which shows the ability of μs-DBD to act as plasma slats. The rolling moment produced by left-side μs-DBD actuation is greater than that produced by the maximum deflection of ailerons,which indicates the potential of μs-DBD to act as plasma ailerons. The results verify the feasibility and efficacy of μs-DBD plasma flow control in a real flight and lay the foundation for the full-sized airplane application.
基金Project (60811120024) supported by the National Natural Science Foundation of ChinaProject(08C52001)supported by the Aeronautics Science Innovation Foundation of China
文摘The fault diagnosis and accommodation strategy for a class of linear parameter-varying (LPV) systems were investigated. A fast adaptive fault estimation (FAFE) algorithm for LPV systems module, based on an adaptive observer, proposed to enhance the performance of fault estimation including rapidity and accuracy. Then, the obtained fault estimate was used to construct the fault tolerant control (FTC) law. The design method was formulated as a convex linear matrix inequalities (LMIs) optimization problem. Once the faults are estimated, the fault tolerant controller is implemented as a dynamic output feedback controller. This controller can compensate for the effect of the faults by stabilizing the closed-loop systems. Finally, a helicopter model in a vertical flight with actuator fault was used to the effectiveness of the proposed approach.