Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in...Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in the flight simulator servo system, especially in a low-speed state. Based on the description of dynamic and static models of a nonlinear Stribeck friction model, this paper puts forward sliding mode controller to overcome the friction, whose stability is展开更多
As friction, intrinsic steady-state nonlinearity poses a challenging dilemma to the control system of 3-DOF (three degree of freedom) flight simulator, a novel hybrid control strategy of nonlinear PID (proportional...As friction, intrinsic steady-state nonlinearity poses a challenging dilemma to the control system of 3-DOF (three degree of freedom) flight simulator, a novel hybrid control strategy of nonlinear PID (proportionalintegral-derivative) with additional FFC (feed-forward controller) is proposed, and the hardware-in-the-loop simulation results are also given. Based on the description of 3-DOF flight simulator, a novel nonlinear PID theory is well introduced. Then a nonlinear PID controller with additional FFC is designed. Subsequently, the loop structure of 3-DOF flight simulator is also designed. Finally, a series of hardware-in-the-loop simulation experiments are undertaken to verify the feasibility and effectiveness of the proposed nonlinear PID controller with additional FFC for 3-DOF flight simulator.展开更多
This paper mainly discusses the following problems: the important meaning and special function of simulation system; the definition, contents and relationship of system and system simulation science; the definition an...This paper mainly discusses the following problems: the important meaning and special function of simulation system; the definition, contents and relationship of system and system simulation science; the definition and technology of simulation system and its equipments; and systematic description and exploration in relation to the developing trend of system simulation science and simulation system technology.展开更多
Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based ...Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.展开更多
To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design...To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design problem can be solved using QFT but it fails to guarantee a high precision tracking. This problem is solved by a robust digital QFT control scheme based on zero phase error (ZPE) feed forward compensation. This scheme consists of two parts: a QFT controller in the closed-loop system and a ZPE feed-forward compensator. Digital QFT controller is designed to overcome the uncertainties in the system. Digital ZPE feed forward controller is used to improve the tracking precision. Simulation and real-time examples for flight simulator servo system indicate that this control scheme can guarantee both high robust performance and high position tracking precision.展开更多
基金This project was supported by the Aeronautics Foundation of China (00E21022).
文摘Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in the flight simulator servo system, especially in a low-speed state. Based on the description of dynamic and static models of a nonlinear Stribeck friction model, this paper puts forward sliding mode controller to overcome the friction, whose stability is
基金the National Natural Science Foundation of China (60604009)Aeronautical Science Foundationof China(2006ZC51039)Beijing NOVA Program (2007A017).
文摘As friction, intrinsic steady-state nonlinearity poses a challenging dilemma to the control system of 3-DOF (three degree of freedom) flight simulator, a novel hybrid control strategy of nonlinear PID (proportionalintegral-derivative) with additional FFC (feed-forward controller) is proposed, and the hardware-in-the-loop simulation results are also given. Based on the description of 3-DOF flight simulator, a novel nonlinear PID theory is well introduced. Then a nonlinear PID controller with additional FFC is designed. Subsequently, the loop structure of 3-DOF flight simulator is also designed. Finally, a series of hardware-in-the-loop simulation experiments are undertaken to verify the feasibility and effectiveness of the proposed nonlinear PID controller with additional FFC for 3-DOF flight simulator.
文摘This paper mainly discusses the following problems: the important meaning and special function of simulation system; the definition, contents and relationship of system and system simulation science; the definition and technology of simulation system and its equipments; and systematic description and exploration in relation to the developing trend of system simulation science and simulation system technology.
基金The project was supported by Aeronautics Foundation of China (00E51022).
文摘Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.
基金This project was supported by the Aeronautics Foundation of China (00E51022).
文摘To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design problem can be solved using QFT but it fails to guarantee a high precision tracking. This problem is solved by a robust digital QFT control scheme based on zero phase error (ZPE) feed forward compensation. This scheme consists of two parts: a QFT controller in the closed-loop system and a ZPE feed-forward compensator. Digital QFT controller is designed to overcome the uncertainties in the system. Digital ZPE feed forward controller is used to improve the tracking precision. Simulation and real-time examples for flight simulator servo system indicate that this control scheme can guarantee both high robust performance and high position tracking precision.