The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas ...The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas the peak OH mass fraction increases significantly under normal gravity(g=9.8 m/s^2).For a very low jet velocity(e.g.,V=0.1 m/s),both the peak OH mass fraction and flame temperature under g=9.8 m/s^2 are lower than the counterparts under g=0 m/s^2.Analysis reveals that when V≥0.2 m/s,fuel/air mixing will be promoted and combustion will be intensified due to radial flow caused by the buoyancy effect.However,the flame temperature will be slightly decreased owing to the large amount of entrainment of cold air into the reaction zone.For V=0.1 m/s,since the heat release rate is very low,the entrainment of cold air and fuel leakage from the rim of tube exit lead to a significant drop of flame temperature.Meanwhile,the heat loss rate from fuel to inner tube wall is larger under g=9.8 m/s^2 compared to that under g=0 m/s^2.Therefore,the buoyancy effect is overall negative at very low jet velocities.展开更多
To investigate the problem of ethylene jet mixing and combustion in the scramjet at high Mach number(Ma = 8), numerical simulations were carried out for different equivalent ratios at cold and combustion conditions, i...To investigate the problem of ethylene jet mixing and combustion in the scramjet at high Mach number(Ma = 8), numerical simulations were carried out for different equivalent ratios at cold and combustion conditions, in which three-dimensional steady compressible RANS and k-ω SST turbulence model were adopted. It demonstrates that as the equivalence ratio increases from 0.42 to 1.08, the combustion becomes more intensified, and the higher backpressure pushes flame to propagate upstream. The supersonic combustion region in the combustor decreases from 92% to 85% with the increase of equivalence ratio from 0.42 to 1.08, resulting in the transition of the combustor from scram-mode to dual-mode. Both mixing and combustion efficiencies decrease by 35% and 16% respectively when the equivalence ratio increases from 0.42 to 1.08, indicating that the high equivalence ratio is unfavorable to the mixing and combustion processes. Combustion mode analysis reveals that the flame in the cavity under the high Mach number is dominated by non-premixed flames, i.e., more than 95% behaves as non-premixed mode, and the heat release is also mainly contributed by non-premixed flame. Increasing the equivalence ratio is beneficial to the thrust performance. Although the viscous force hardly changes with equivalence ratio, the percentage of pressure force used to balance the viscous force increases gradually,which limits the engine performance.展开更多
基金Project(51576084)supported by the National Natural Science Foundation of China。
文摘The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas the peak OH mass fraction increases significantly under normal gravity(g=9.8 m/s^2).For a very low jet velocity(e.g.,V=0.1 m/s),both the peak OH mass fraction and flame temperature under g=9.8 m/s^2 are lower than the counterparts under g=0 m/s^2.Analysis reveals that when V≥0.2 m/s,fuel/air mixing will be promoted and combustion will be intensified due to radial flow caused by the buoyancy effect.However,the flame temperature will be slightly decreased owing to the large amount of entrainment of cold air into the reaction zone.For V=0.1 m/s,since the heat release rate is very low,the entrainment of cold air and fuel leakage from the rim of tube exit lead to a significant drop of flame temperature.Meanwhile,the heat loss rate from fuel to inner tube wall is larger under g=9.8 m/s^2 compared to that under g=0 m/s^2.Therefore,the buoyancy effect is overall negative at very low jet velocities.
文摘To investigate the problem of ethylene jet mixing and combustion in the scramjet at high Mach number(Ma = 8), numerical simulations were carried out for different equivalent ratios at cold and combustion conditions, in which three-dimensional steady compressible RANS and k-ω SST turbulence model were adopted. It demonstrates that as the equivalence ratio increases from 0.42 to 1.08, the combustion becomes more intensified, and the higher backpressure pushes flame to propagate upstream. The supersonic combustion region in the combustor decreases from 92% to 85% with the increase of equivalence ratio from 0.42 to 1.08, resulting in the transition of the combustor from scram-mode to dual-mode. Both mixing and combustion efficiencies decrease by 35% and 16% respectively when the equivalence ratio increases from 0.42 to 1.08, indicating that the high equivalence ratio is unfavorable to the mixing and combustion processes. Combustion mode analysis reveals that the flame in the cavity under the high Mach number is dominated by non-premixed flames, i.e., more than 95% behaves as non-premixed mode, and the heat release is also mainly contributed by non-premixed flame. Increasing the equivalence ratio is beneficial to the thrust performance. Although the viscous force hardly changes with equivalence ratio, the percentage of pressure force used to balance the viscous force increases gradually,which limits the engine performance.