Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust min...Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust mining area,a method based on multiple-feature sets is proposed.Features of the target echoes are extracted by linear prediction method and wavelet analysis methods,and the linear prediction coefficient and linear prediction cepstrum coefficient are also extracted.Meanwhile,the characteristic matrices of modulus maxima,sub-band energy and multi-resolution singular spectrum entropy are obtained,respectively.The resulting features are subsequently compressed by kernel Fisher discriminant analysis(KFDA),the output features are selected using genetic algorithm(GA)to obtain optimal feature subsets,and recognition results of classifier are chosen as genetic fitness function.The advantages of this method are that it can describe the signal features more comprehensively and select the favorable features and remove the redundant features to the greatest extent.The experimental results show the better performance of the proposed method in comparison with only using KFDA or GA.展开更多
Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting...Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting to changes in the environment. To realize the whole process of SAR automatic target recognition (ATR), es- pecially for the detection and recognition of vehicles, an algorithm based on kernel fisher discdminant analysis (KFDA) is proposed. First, in order to make a better description of the difference be- tween the background and the target, KFDA is extended to the detection part. Image samples are obtained with a dual-window approach and features of the inner and outer window samples are extracted by using KFDA. The difference between the features of inner and outer window samples is compared with a threshold to determine whether a vehicle exists. Second, for the target area, we propose an improved KFDA-IMED (image Euclidean distance) combined with a support vector machine (SVM) to recognize the vehicles. Experimental results validate the performance of our method. On the detection task, our proposed method obtains not only a high detection rate but also a low false alarm rate without using any prior information. For the recognition task, our method overcomes the SAR image aspect angle sensitivity, reduces the requirements for image preprocessing and improves the recogni- tion rate.展开更多
基金Project(51874353)supported by the National Natural Science Foundation of ChinaProject(GCX20190898Y)supported by Mittal Student Innovation Project,China。
文摘Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust mining area,a method based on multiple-feature sets is proposed.Features of the target echoes are extracted by linear prediction method and wavelet analysis methods,and the linear prediction coefficient and linear prediction cepstrum coefficient are also extracted.Meanwhile,the characteristic matrices of modulus maxima,sub-band energy and multi-resolution singular spectrum entropy are obtained,respectively.The resulting features are subsequently compressed by kernel Fisher discriminant analysis(KFDA),the output features are selected using genetic algorithm(GA)to obtain optimal feature subsets,and recognition results of classifier are chosen as genetic fitness function.The advantages of this method are that it can describe the signal features more comprehensively and select the favorable features and remove the redundant features to the greatest extent.The experimental results show the better performance of the proposed method in comparison with only using KFDA or GA.
基金supported by the National Natural Science Foundation of China(6107113961471019+5 种基金61171122)the Aeronautical Science Foundation of China(20142051022)the Foundation of ATR Key Lab(C80264)the National Natural Science Foundation of China(NNSFC)under the RSE-NNSFC Joint Project(2012-2014)(61211130210)with Beihang Universitythe RSE-NNSFC Joint Project(2012-2014)(61211130309)with Anhui Universitythe"Sino-UK Higher Education Research Partnership for Ph D Studies"Joint Project(2013-2015)
文摘Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting to changes in the environment. To realize the whole process of SAR automatic target recognition (ATR), es- pecially for the detection and recognition of vehicles, an algorithm based on kernel fisher discdminant analysis (KFDA) is proposed. First, in order to make a better description of the difference be- tween the background and the target, KFDA is extended to the detection part. Image samples are obtained with a dual-window approach and features of the inner and outer window samples are extracted by using KFDA. The difference between the features of inner and outer window samples is compared with a threshold to determine whether a vehicle exists. Second, for the target area, we propose an improved KFDA-IMED (image Euclidean distance) combined with a support vector machine (SVM) to recognize the vehicles. Experimental results validate the performance of our method. On the detection task, our proposed method obtains not only a high detection rate but also a low false alarm rate without using any prior information. For the recognition task, our method overcomes the SAR image aspect angle sensitivity, reduces the requirements for image preprocessing and improves the recogni- tion rate.