Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte...Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.展开更多
This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertaint...This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertainties and external disturbances. The first control scheme is developed by combining sliding mode con- trol with a backstepping technique to achieve fast and accurate tracking responses. To obtain higher tracking precision and relax the requirement of the upper bounds on the uncertainties, a se- cond control law is also designed by combining the second or- der sliding mode control and an adaptive backstepping technique. This control law provides complete compensation of uncertainty and disturbances. Although it assumes that the uncertainty and disturbances are bounded, the proposed control law does not require information about the bounds on the uncertainties and disturbances. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system are ensured by the Lya- punov approach. Numerical simulations on attitude tracking control of spacecraft are provided to demonstrate the performance of the proposed controllers.展开更多
This paper investigates the problem of designing a fast convergent sliding mode flight controller of a transport aircraft for heavyweight airdrop operations in the presence of bounded uncertainties without the prior k...This paper investigates the problem of designing a fast convergent sliding mode flight controller of a transport aircraft for heavyweight airdrop operations in the presence of bounded uncertainties without the prior knowledge of the bounds. On the basis of feedback linearization of the aircraft-cargo motion system, a novel integral sliding mode flight control law with gains adaptation is proposed. It contains a nominal control law used to achieve finite-time stabilization performance and a compensated control law used to reject the uncertainties. The switching gains of the compensated control law are tuned using adaptation algorithms, and the knowledge of the bounds of the uncertainties is not required to be known in advance. Meanwhile, the severe chattering of the sliding mode control that caused by high switching gains is effectively reduced. The controller and its performance are evaluated on a transport aircraft performing a maximum load airdrop task in a number of simulation scenarios.展开更多
This paper investigates a distributed coordination control scheme using an adaptive terminal sliding mode for formation flying spacecraft with coupled attitude and translational dynamics. In order to overcome the sing...This paper investigates a distributed coordination control scheme using an adaptive terminal sliding mode for formation flying spacecraft with coupled attitude and translational dynamics. In order to overcome the singularity of the traditional fast terminal sliding manifold, a novel fast terminal sliding manifold is given. And then, based on the adaptive control method, a continuous robust coordinated controller is designed to compensate external disturbances and to alleviate the chattering phenomenon. The theoretical analysis shows that the coordinated controller can guarantee the finite-time stability of the overall closed-loop system through local information exchange, and numerical simulations also demonstrate its effectiveness.展开更多
The problem of finite-time practical stability (FTPS) for time-varying polytopic systems is discussed. Three equivalent conditions for FTPS are first proposed. To facilitate the system analysis, a sufficient linear ...The problem of finite-time practical stability (FTPS) for time-varying polytopic systems is discussed. Three equivalent conditions for FTPS are first proposed. To facilitate the system analysis, a sufficient linear matrix inequality (LMI) criterion on the FTPS is further provided. The definition of finite-time practical boundedness and a sufficient LMI criterion are also provided to overcome the exogenous disturbance. A numerical example is used to illustrate the effect of the proposed approach.展开更多
The output feedback control for spacecraft attitude tracking system is investigated in this study. It is assumed that angular velocity measurements are not available for feedback control.A technique named adding power...The output feedback control for spacecraft attitude tracking system is investigated in this study. It is assumed that angular velocity measurements are not available for feedback control.A technique named adding power integrator(API) is adopted to estimate the pseudo-angular-velocity. Then we design a finite-time attitude control law, which only utilizes the relative attitude information. The stability analyses of the feedback system are proved as well, which shows the attitude tracking errors will converge into a region of zero even the external disturbances exist. The simulation results illustrate the high precision and robust attitude control performance of the proposed control strategy.展开更多
The dynamic modeling, finite-time trajectory tracking control and vibration suppression of a flexible two-link space robot are studied. Firstly, the dynamic model of the system is established by combining Lagrange met...The dynamic modeling, finite-time trajectory tracking control and vibration suppression of a flexible two-link space robot are studied. Firstly, the dynamic model of the system is established by combining Lagrange method with assumed mode method. In order to ensure that the base attitude and the joints of space robot can reach the desired positions within a limited time, a non-singular fast terminal sliding mode(NFTSM) controller is designed, which realizes the finite-time convergence of the trajectory tracking errors. Subsequently, for the sake of suppressing the vibrations of flexible links, a hybrid trajectory based on the concept of the virtual control force is developed, which can reflect the flexible modes and the trajectory tracking errors simultaneously. By modifying the original control scheme, a NFTSM hybrid controller is proposed. The hybrid control scheme can not only realized attitude stabilization and trajectory tracking of joints in finite time, but also provide a new method of vibration suppression. The simulation results verify the effectiveness of the designed hybrid control strategy.展开更多
This paper investigates the problem of formation tracking control for multiple flight vehicle(MFV) system considering actuator saturation constraints. First, the formation tracking control model is established. Then, ...This paper investigates the problem of formation tracking control for multiple flight vehicle(MFV) system considering actuator saturation constraints. First, the formation tracking control model is established. Then, the problem of formation control of the MFV system is converted to the convergence of a dynamical system, which is obtained by using the differential geometry theory.A class of saturation functions is introduced, and on this basis a second-order finite-time formation control protocol is developed.With the help of the homogeneous theory and Lasalle's invariance principle, it is theoretically proved that the designed formation protocol could complete the formation task in finite time, and the control inputs are shown to remain within their available actuating limits. Finally, simulations are performed to verify the effectiveness of the scheme.展开更多
Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finit...Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finite-time stab!lity analysis are investigated for a class of Markovian switching stochastic sys- tems, in which exist impulses at the switching instants. Multiple Lyapunov techniques are used to derive sufficient conditions for finite-time stochastic stability of the overall system. Furthermore, a state feedback controller, which stabilizes the closed loop sys- tems in the finite-time sense, is then addressed. Moreover, the controller appears not only in the shift part but also in the diffu- sion part of the underlying stochastic subsystem. The results are reduced to feasibility problems involving linear matrix inequalities (LMIs). A numerical example is presented to illustrate the proposed methodology.展开更多
This paper studies a finite-time adaptive fractionalorder fault-tolerant control(FTC)scheme for the slave position tracking of the teleoperating cyber physical system(TCPS)with external disturbances and actuator fault...This paper studies a finite-time adaptive fractionalorder fault-tolerant control(FTC)scheme for the slave position tracking of the teleoperating cyber physical system(TCPS)with external disturbances and actuator faults.Based on the fractional Lyapunov stability theory and the finite-time stability theory,a fractional-order nonsingular fast terminal sliding mode(FONFTSM)control law is proposed to promote the tracking and fault tolerance performance of the considered system.Meanwhile,the adaptive fractional-order update laws are designed to cope with the unknown upper bounds of the unknown actuator faults and external disturbances.Furthermore,the finite-time stability of the closed-loop system is proved.Finally,comparison simulation results are also provided to show the validity and the advantages of the proposed techniques.展开更多
A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight...A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight(LOS) rate. For the sake of theoretical derivation, an IGC model in the pitch plane is established. The high-order finite-time state observer(FTSO), with the LOS angle as the single input, is employed to reconstruct the states of the system online. Besides, a composited IGC algorithm is presented via the fusion of back-stepping and dynamic inverse. Compared with the traditional IGC algorithm, the proposed composited IGC method can attenuate effectively the design conservation of the flight control system, while the LOS rate is mixed with noise. Extensive experiments have been performed to demonstrate that the proposed approach is globally finite-time stable and strongly robust against parameter uncertainty.展开更多
Aimed at the finite-time stabilization problem of a class of flexible manipulators,a finite-time state feedback stabilization controller was proposed in this paper.Firstly,the nonlinear model of flexible manipulators ...Aimed at the finite-time stabilization problem of a class of flexible manipulators,a finite-time state feedback stabilization controller was proposed in this paper.Firstly,the nonlinear model of flexible manipulators was transformed into linear system through the exact state feedback linearization,and then using the finite time stabilization control method of the linear system,a finite-time state feedback stabilization controller was designed for the flexible manipulators.Furthermore,it was proved that all the states of flexible manipulators could be stabilized to equilibrium in finite-time under the proposed controller.The simulation results show that the performance of the flexible manipulators under the proposed finite-time state feedback controller is better than the traditional state-feedback controller.The proposed finite-time stabilization controller can improve the performance of the flexible manipulators.展开更多
To solve the problem of providing the best initial situation for terminal guidance when multiple missiles intercept multiple targets,a group cooperative midcourse guidance law(GCMGL)considering time-to-go is proposed....To solve the problem of providing the best initial situation for terminal guidance when multiple missiles intercept multiple targets,a group cooperative midcourse guidance law(GCMGL)considering time-to-go is proposed.Firstly,a threedimensional(3D)guidance model is established and a cooperative trajectory shaping guidance law is given.Secondly,for estimating the unknown target maneuvering acceleration,an adaptive disturbance observer(ADO)is designed,combining finitetime theory with a radial basis function(RBF)neural network,and the convergence of the estimation error is proven using Lyapunov stability theory.Then,to ensure time-to-go cooperation among missiles within the same group and across different groups,the group consensus protocols of virtual collision point mean and the inter-group cooperative consensus protocol are designed respectively.Based on the group consensus protocols,the virtual collision point cooperative guidance law is given,and the finite-time convergence is proved by Lyapunov stability theory.Simultaneously,combined with trajectory shaping guidance law,virtual collision point cooperative guidance law and the intergroup cooperative consensus protocol,the design of GCMGL considering time-to-go is given.Finally,numerical simulation results show the effectiveness and the superiority of the proposed GCMGL.展开更多
For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode contr...For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.展开更多
This paper proposes a fast integral terminal sliding mode(ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented...This paper proposes a fast integral terminal sliding mode(ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented, which not only avoids the singularity in the traditional terminal sliding mode, but also addresses the mismatched problems in the nonlinear control system. Secondly, a new ITSM controller with finite convergence time based on the backstepping technique is derived for a cascaded nonlinear dynamical system with mismatched uncertainties. Thirdly, the convergence time of ITSM is analyzed, whose convergence speed is faster than those of two nonsingular terminal sliding modes.Finally, simulation results are presented in order to evaluate the effectiveness of ITSM control strategies for mismatched uncertainties.展开更多
This paper proposes a cooperative guidance law for attacking a ground target with the impact angle constraint based on the motion camouflage strategy in the line-of-sight(LOS)frame.A dynamic model with the impact angl...This paper proposes a cooperative guidance law for attacking a ground target with the impact angle constraint based on the motion camouflage strategy in the line-of-sight(LOS)frame.A dynamic model with the impact angle constraint is established according to the relative motion between multiple missiles and the target.The process of cooperative guidance law design is divided into two stages.Firstly,based on the undirected graph theory,a new finite-time consensus protocol on the LOS direction is derived to guarantee relative distances reach consensus.And the value of acceleration command is positive,which is beneficial for engineering realization.Secondly,the acceleration command on the normal direction of the LOS is designed based on motion camouflage and finite-time convergence,which can ensure the missiles reach the target with the desired angle and satisfy the motion camouflage state.The finitetime stability analysis is proved by the Lyapunov theory.Numerical simulations for stationary and maneuver targets have demonstrated the effectiveness of the cooperative guidance law proposed.展开更多
A novel hybrid robust three-axis attitude control approach, namely HRTAC, is considered along with the well-known developments in the area of space systems, since there is a consensus among the related experts that th...A novel hybrid robust three-axis attitude control approach, namely HRTAC, is considered along with the well-known developments in the area of space systems, since there is a consensus among the related experts that the new insights may be taken into account as decision points to outperform the available materials. It is to note that the traditional control approaches may generally be upgraded, as long as a number of modifications are made with respect to state-of-the-art, in order to propose high-precision outcomes. Regarding the investigated issues, the robust sliding mode finite-time control approach is first designed to handle three-axis angular rates in the inner control loop, which consists of the pulse width pulse frequency modulations in line with the control allocation scheme and the system dynamics. The main subject to employ these modulations that is realizing in association with the control allocation scheme is to be able to handle a class of overactuated systems, in particular. The proportional derivative based linear quadratic regulator approach is then designed to handle three-axis rotational angles in the outer control loop, which consists of the system kinematics that is correspondingly concentrated to deal with the quaternion based model. The utilization of the linear and its nonlinear terms, simultaneously, are taken into real consideration as the research motivation, while the performance results are of the significance as the improved version in comparison with the recent investigated outcomes. Subsequently, there is a stability analysis to verify and guarantee the closed loop system performance in coping with the whole of nominal referenced commands. At the end, the effectiveness of the approach considered here is highlighted in line with a number of potential recent benchmarks.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61773142).
文摘Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.
文摘This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertainties and external disturbances. The first control scheme is developed by combining sliding mode con- trol with a backstepping technique to achieve fast and accurate tracking responses. To obtain higher tracking precision and relax the requirement of the upper bounds on the uncertainties, a se- cond control law is also designed by combining the second or- der sliding mode control and an adaptive backstepping technique. This control law provides complete compensation of uncertainty and disturbances. Although it assumes that the uncertainty and disturbances are bounded, the proposed control law does not require information about the bounds on the uncertainties and disturbances. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system are ensured by the Lya- punov approach. Numerical simulations on attitude tracking control of spacecraft are provided to demonstrate the performance of the proposed controllers.
基金supported by the National Natural Science Foundation of China(61273141)Aviation Science Foundation of China(20141396012)
文摘This paper investigates the problem of designing a fast convergent sliding mode flight controller of a transport aircraft for heavyweight airdrop operations in the presence of bounded uncertainties without the prior knowledge of the bounds. On the basis of feedback linearization of the aircraft-cargo motion system, a novel integral sliding mode flight control law with gains adaptation is proposed. It contains a nominal control law used to achieve finite-time stabilization performance and a compensated control law used to reject the uncertainties. The switching gains of the compensated control law are tuned using adaptation algorithms, and the knowledge of the bounds of the uncertainties is not required to be known in advance. Meanwhile, the severe chattering of the sliding mode control that caused by high switching gains is effectively reduced. The controller and its performance are evaluated on a transport aircraft performing a maximum load airdrop task in a number of simulation scenarios.
基金supported by the National Natural Science Foundation of China(61174037)the National High Technology Research and Development Program of China(863 Program)(2012AA120602CAST20120602)
文摘This paper investigates a distributed coordination control scheme using an adaptive terminal sliding mode for formation flying spacecraft with coupled attitude and translational dynamics. In order to overcome the singularity of the traditional fast terminal sliding manifold, a novel fast terminal sliding manifold is given. And then, based on the adaptive control method, a continuous robust coordinated controller is designed to compensate external disturbances and to alleviate the chattering phenomenon. The theoretical analysis shows that the coordinated controller can guarantee the finite-time stability of the overall closed-loop system through local information exchange, and numerical simulations also demonstrate its effectiveness.
基金partially supported by Major Program of National Natural Science Foundation of China(60710002)Program for Changjiang Scholar and Innovative Research Team in University(PCSIRT).
文摘The problem of finite-time practical stability (FTPS) for time-varying polytopic systems is discussed. Three equivalent conditions for FTPS are first proposed. To facilitate the system analysis, a sufficient linear matrix inequality (LMI) criterion on the FTPS is further provided. The definition of finite-time practical boundedness and a sufficient LMI criterion are also provided to overcome the exogenous disturbance. A numerical example is used to illustrate the effect of the proposed approach.
基金supported by the National Natural Science Foundation of China(616731356140310361603114)
文摘The output feedback control for spacecraft attitude tracking system is investigated in this study. It is assumed that angular velocity measurements are not available for feedback control.A technique named adding power integrator(API) is adopted to estimate the pseudo-angular-velocity. Then we design a finite-time attitude control law, which only utilizes the relative attitude information. The stability analyses of the feedback system are proved as well, which shows the attitude tracking errors will converge into a region of zero even the external disturbances exist. The simulation results illustrate the high precision and robust attitude control performance of the proposed control strategy.
基金supported by the National Natural Science Foundation of China (No. 11372073)。
文摘The dynamic modeling, finite-time trajectory tracking control and vibration suppression of a flexible two-link space robot are studied. Firstly, the dynamic model of the system is established by combining Lagrange method with assumed mode method. In order to ensure that the base attitude and the joints of space robot can reach the desired positions within a limited time, a non-singular fast terminal sliding mode(NFTSM) controller is designed, which realizes the finite-time convergence of the trajectory tracking errors. Subsequently, for the sake of suppressing the vibrations of flexible links, a hybrid trajectory based on the concept of the virtual control force is developed, which can reflect the flexible modes and the trajectory tracking errors simultaneously. By modifying the original control scheme, a NFTSM hybrid controller is proposed. The hybrid control scheme can not only realized attitude stabilization and trajectory tracking of joints in finite time, but also provide a new method of vibration suppression. The simulation results verify the effectiveness of the designed hybrid control strategy.
基金supported by the National Natural Science Foundation of China (61903099)the Natural Science Foundation of Heilongjiang Province (LH2020F025)the Fundamental Research Funds for the Central Universities (3072020CF0406)。
文摘This paper investigates the problem of formation tracking control for multiple flight vehicle(MFV) system considering actuator saturation constraints. First, the formation tracking control model is established. Then, the problem of formation control of the MFV system is converted to the convergence of a dynamical system, which is obtained by using the differential geometry theory.A class of saturation functions is introduced, and on this basis a second-order finite-time formation control protocol is developed.With the help of the homogeneous theory and Lasalle's invariance principle, it is theoretically proved that the designed formation protocol could complete the formation task in finite time, and the control inputs are shown to remain within their available actuating limits. Finally, simulations are performed to verify the effectiveness of the scheme.
基金supported in part by the National Natural Science Foundation of China(60374015)
文摘Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finite-time stab!lity analysis are investigated for a class of Markovian switching stochastic sys- tems, in which exist impulses at the switching instants. Multiple Lyapunov techniques are used to derive sufficient conditions for finite-time stochastic stability of the overall system. Furthermore, a state feedback controller, which stabilizes the closed loop sys- tems in the finite-time sense, is then addressed. Moreover, the controller appears not only in the shift part but also in the diffu- sion part of the underlying stochastic subsystem. The results are reduced to feasibility problems involving linear matrix inequalities (LMIs). A numerical example is presented to illustrate the proposed methodology.
基金supported by the National Natural Science Foundation of China(61973331,61973257)the National Key Research and Development Plan Programs of China(2018YFB0106101).
文摘This paper studies a finite-time adaptive fractionalorder fault-tolerant control(FTC)scheme for the slave position tracking of the teleoperating cyber physical system(TCPS)with external disturbances and actuator faults.Based on the fractional Lyapunov stability theory and the finite-time stability theory,a fractional-order nonsingular fast terminal sliding mode(FONFTSM)control law is proposed to promote the tracking and fault tolerance performance of the considered system.Meanwhile,the adaptive fractional-order update laws are designed to cope with the unknown upper bounds of the unknown actuator faults and external disturbances.Furthermore,the finite-time stability of the closed-loop system is proved.Finally,comparison simulation results are also provided to show the validity and the advantages of the proposed techniques.
基金supported by the National Natural Science Foundation of China(61627810 61790562 61403096)
文摘A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight(LOS) rate. For the sake of theoretical derivation, an IGC model in the pitch plane is established. The high-order finite-time state observer(FTSO), with the LOS angle as the single input, is employed to reconstruct the states of the system online. Besides, a composited IGC algorithm is presented via the fusion of back-stepping and dynamic inverse. Compared with the traditional IGC algorithm, the proposed composited IGC method can attenuate effectively the design conservation of the flight control system, while the LOS rate is mixed with noise. Extensive experiments have been performed to demonstrate that the proposed approach is globally finite-time stable and strongly robust against parameter uncertainty.
基金Sponsored by the Doctoral Fund of Ministry of Education of China(20070288022)the Natural Science Foundation of Jiangsu Province of China(BK2008404)the Young Teacher Academic Foundation of Nanjing University of Technology(39710013)
文摘Aimed at the finite-time stabilization problem of a class of flexible manipulators,a finite-time state feedback stabilization controller was proposed in this paper.Firstly,the nonlinear model of flexible manipulators was transformed into linear system through the exact state feedback linearization,and then using the finite time stabilization control method of the linear system,a finite-time state feedback stabilization controller was designed for the flexible manipulators.Furthermore,it was proved that all the states of flexible manipulators could be stabilized to equilibrium in finite-time under the proposed controller.The simulation results show that the performance of the flexible manipulators under the proposed finite-time state feedback controller is better than the traditional state-feedback controller.The proposed finite-time stabilization controller can improve the performance of the flexible manipulators.
基金supported by the National Natural Science Foundation of China(62003264).
文摘To solve the problem of providing the best initial situation for terminal guidance when multiple missiles intercept multiple targets,a group cooperative midcourse guidance law(GCMGL)considering time-to-go is proposed.Firstly,a threedimensional(3D)guidance model is established and a cooperative trajectory shaping guidance law is given.Secondly,for estimating the unknown target maneuvering acceleration,an adaptive disturbance observer(ADO)is designed,combining finitetime theory with a radial basis function(RBF)neural network,and the convergence of the estimation error is proven using Lyapunov stability theory.Then,to ensure time-to-go cooperation among missiles within the same group and across different groups,the group consensus protocols of virtual collision point mean and the inter-group cooperative consensus protocol are designed respectively.Based on the group consensus protocols,the virtual collision point cooperative guidance law is given,and the finite-time convergence is proved by Lyapunov stability theory.Simultaneously,combined with trajectory shaping guidance law,virtual collision point cooperative guidance law and the intergroup cooperative consensus protocol,the design of GCMGL considering time-to-go is given.Finally,numerical simulation results show the effectiveness and the superiority of the proposed GCMGL.
文摘For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.
基金supported by the National Natural Science Foundation of China(61473226)
文摘This paper proposes a fast integral terminal sliding mode(ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented, which not only avoids the singularity in the traditional terminal sliding mode, but also addresses the mismatched problems in the nonlinear control system. Secondly, a new ITSM controller with finite convergence time based on the backstepping technique is derived for a cascaded nonlinear dynamical system with mismatched uncertainties. Thirdly, the convergence time of ITSM is analyzed, whose convergence speed is faster than those of two nonsingular terminal sliding modes.Finally, simulation results are presented in order to evaluate the effectiveness of ITSM control strategies for mismatched uncertainties.
基金This work was supported by the National Nature Science Foundation of China(11572097).
文摘This paper proposes a cooperative guidance law for attacking a ground target with the impact angle constraint based on the motion camouflage strategy in the line-of-sight(LOS)frame.A dynamic model with the impact angle constraint is established according to the relative motion between multiple missiles and the target.The process of cooperative guidance law design is divided into two stages.Firstly,based on the undirected graph theory,a new finite-time consensus protocol on the LOS direction is derived to guarantee relative distances reach consensus.And the value of acceleration command is positive,which is beneficial for engineering realization.Secondly,the acceleration command on the normal direction of the LOS is designed based on motion camouflage and finite-time convergence,which can ensure the missiles reach the target with the desired angle and satisfy the motion camouflage state.The finitetime stability analysis is proved by the Lyapunov theory.Numerical simulations for stationary and maneuver targets have demonstrated the effectiveness of the cooperative guidance law proposed.
文摘A novel hybrid robust three-axis attitude control approach, namely HRTAC, is considered along with the well-known developments in the area of space systems, since there is a consensus among the related experts that the new insights may be taken into account as decision points to outperform the available materials. It is to note that the traditional control approaches may generally be upgraded, as long as a number of modifications are made with respect to state-of-the-art, in order to propose high-precision outcomes. Regarding the investigated issues, the robust sliding mode finite-time control approach is first designed to handle three-axis angular rates in the inner control loop, which consists of the pulse width pulse frequency modulations in line with the control allocation scheme and the system dynamics. The main subject to employ these modulations that is realizing in association with the control allocation scheme is to be able to handle a class of overactuated systems, in particular. The proportional derivative based linear quadratic regulator approach is then designed to handle three-axis rotational angles in the outer control loop, which consists of the system kinematics that is correspondingly concentrated to deal with the quaternion based model. The utilization of the linear and its nonlinear terms, simultaneously, are taken into real consideration as the research motivation, while the performance results are of the significance as the improved version in comparison with the recent investigated outcomes. Subsequently, there is a stability analysis to verify and guarantee the closed loop system performance in coping with the whole of nominal referenced commands. At the end, the effectiveness of the approach considered here is highlighted in line with a number of potential recent benchmarks.