By elastic-plastic finite deformation finite element analysis (FEA), the conservation of J-integral is investigated in detail for a welded joint with an overmatchingweld in plane stress case. It is indicated that J-in...By elastic-plastic finite deformation finite element analysis (FEA), the conservation of J-integral is investigated in detail for a welded joint with an overmatchingweld in plane stress case. It is indicated that J-integral is path dependent under various conditions at least in the cases studied in this paper. Meanwhile, the above conclusions are verified by the hybrid method results in which combined Moire interferometry with FEA.展开更多
A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first ...A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.展开更多
In this paper, the nonconforming mortar finite element with a class of meshes is studied without considering the global regularity condition or quasi-uniformly assumption. Meanwhile, the superclose result coincides wi...In this paper, the nonconforming mortar finite element with a class of meshes is studied without considering the global regularity condition or quasi-uniformly assumption. Meanwhile, the superclose result coincides with conventional methods is obtained by means of integral identities techniques.展开更多
Generally, viscoelastic solid constitutive equation can be written into differential form and integral form. From differential form of constitutive equation the mathematical representation of the state space equation ...Generally, viscoelastic solid constitutive equation can be written into differential form and integral form. From differential form of constitutive equation the mathematical representation of the state space equation can be derived. Due to the state space equation, general constitutive equation can be solved by precise integration method that can be used in many fields with the advantages of highly precision and convenience. For linear viscoelastic solids with crack, the finite elements program of the precise integration method for viscoelastic solid is developed, which appears to be efficient and precise. C-integral is used to be the characterising parameter.展开更多
Based on the polynomial interpolation, a new finite difference (FD) method in solving the full-vectorial guidedmodes for step-index optical waveguides is proposed. The discontinuities of the normal components of the...Based on the polynomial interpolation, a new finite difference (FD) method in solving the full-vectorial guidedmodes for step-index optical waveguides is proposed. The discontinuities of the normal components of the electric field across abrupt dielectric interfaces are considered in the absence of the limitations of scalar and semivectorial approximation, and the present PD scheme can be applied to both uniform and non-uniform mesh grids. The modal propagation constants and field distributions for buried rectangular waveguides and optical rib waveguides are presented. The hybrid nature of the vectorial modes is demonstrated and the singular behaviours of the minor field components in the corners are observed. Moreover, solutions are in good agreement with those published early, which tests the validity of the present approach.展开更多
The aim of the present paper is to introduce and study a new type of q-Mellin transform [11], that will be called q-finite Mellin transform. In particular, we prove for this new transform an inversion formula and q-co...The aim of the present paper is to introduce and study a new type of q-Mellin transform [11], that will be called q-finite Mellin transform. In particular, we prove for this new transform an inversion formula and q-convolution product. The application of this transform is also earlier proposed in solving procedure for a new equation with a new fractional differential operator of a variational type.展开更多
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF me...The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.展开更多
With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and re...With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and recombination of base functions. Hammer integral formulas are the special examples of those of the paper.展开更多
Focusing on electronic products,this paper establishes a finite element model for printed circuit board(PCB)assembling with enhanced ball grid array(EBGA)component under vibration environment.Based on this model,it st...Focusing on electronic products,this paper establishes a finite element model for printed circuit board(PCB)assembling with enhanced ball grid array(EBGA)component under vibration environment.Based on this model,it studies relations between fatigue rate of solder joint and temperature,vibration frequency.Moreover,it analyzes propagation of micro-crack produced by thermal cycle under vibration stress.The results offer a method to optimize the thermal cycle and vibration integrated profile and to combine vibration test and thermal cycling for highly accelerated life test(HALT).展开更多
文摘By elastic-plastic finite deformation finite element analysis (FEA), the conservation of J-integral is investigated in detail for a welded joint with an overmatchingweld in plane stress case. It is indicated that J-integral is path dependent under various conditions at least in the cases studied in this paper. Meanwhile, the above conclusions are verified by the hybrid method results in which combined Moire interferometry with FEA.
文摘A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.
基金Foundation item: Supported by the NSF of China(10371113)Supported by the Foundation of Overseas Scholar of China(2001(119))Supported by the project of Creative Engineering of Province of China(2002(219))
文摘In this paper, the nonconforming mortar finite element with a class of meshes is studied without considering the global regularity condition or quasi-uniformly assumption. Meanwhile, the superclose result coincides with conventional methods is obtained by means of integral identities techniques.
文摘Generally, viscoelastic solid constitutive equation can be written into differential form and integral form. From differential form of constitutive equation the mathematical representation of the state space equation can be derived. Due to the state space equation, general constitutive equation can be solved by precise integration method that can be used in many fields with the advantages of highly precision and convenience. For linear viscoelastic solids with crack, the finite elements program of the precise integration method for viscoelastic solid is developed, which appears to be efficient and precise. C-integral is used to be the characterising parameter.
文摘Based on the polynomial interpolation, a new finite difference (FD) method in solving the full-vectorial guidedmodes for step-index optical waveguides is proposed. The discontinuities of the normal components of the electric field across abrupt dielectric interfaces are considered in the absence of the limitations of scalar and semivectorial approximation, and the present PD scheme can be applied to both uniform and non-uniform mesh grids. The modal propagation constants and field distributions for buried rectangular waveguides and optical rib waveguides are presented. The hybrid nature of the vectorial modes is demonstrated and the singular behaviours of the minor field components in the corners are observed. Moreover, solutions are in good agreement with those published early, which tests the validity of the present approach.
文摘The aim of the present paper is to introduce and study a new type of q-Mellin transform [11], that will be called q-finite Mellin transform. In particular, we prove for this new transform an inversion formula and q-convolution product. The application of this transform is also earlier proposed in solving procedure for a new equation with a new fractional differential operator of a variational type.
文摘The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
文摘With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and recombination of base functions. Hammer integral formulas are the special examples of those of the paper.
基金Sponsored by the National Advanced Research Project of China(41319030101)
文摘Focusing on electronic products,this paper establishes a finite element model for printed circuit board(PCB)assembling with enhanced ball grid array(EBGA)component under vibration environment.Based on this model,it studies relations between fatigue rate of solder joint and temperature,vibration frequency.Moreover,it analyzes propagation of micro-crack produced by thermal cycle under vibration stress.The results offer a method to optimize the thermal cycle and vibration integrated profile and to combine vibration test and thermal cycling for highly accelerated life test(HALT).