华北大气污染区域化正在对农业生态区域产生显著影响,为了了解华北农业地区大气细颗粒物PM_(2.5)的季节分布特征,2017年7月、9月、12月以及2018年4月在中国科学院禹城农业生态综合实验站进行分季节PM_(2.5)样品采集,并测定分析了样品中3...华北大气污染区域化正在对农业生态区域产生显著影响,为了了解华北农业地区大气细颗粒物PM_(2.5)的季节分布特征,2017年7月、9月、12月以及2018年4月在中国科学院禹城农业生态综合实验站进行分季节PM_(2.5)样品采集,并测定分析了样品中31种化学成分。结果表明,碳质气溶胶总体的浓度水平为13.11±8.37μg m^(−3),有机碳(OC)冬春季节浓度较高,元素碳(EC)浓度在秋冬季节较高。同时OC/EC的比值在秋季明显偏低,表明在秋季二次碳质气溶胶对PM_(2.5)贡献较小。水溶性离子浓度总体在冬季最高。NO_(3)^(-)/SO_(4)^(2-)比值在夏季明显偏低为0.69,华北地区夏季固定点源对大气污染的贡献相对较高。PM_(2.5)中金属元素以Na、Mg、Al、Ca、K、Fe等地壳元素为主,具有致癌风险的Co、Cr、Ni、Pb、As等金属元素年均浓度为0.32±0.24 ng m^(−3)、5.40±5.42 ng m^(−3)、10.23±7.46 ng m^(−3)、42.23±27.75 ng m^(−3)、5.66±3.79 ng m^(−3)。受体模型(PMF)计算结果表明,PM_(2.5)的主要来源为二次污染源、生物质燃烧源、燃煤燃油源、柴油车尾气和土壤源,贡献率分别达37.1%、18.2%、14.2%、9.4%和7.9%,表明农业区细颗粒物污染受到华北工业、农业与自然排放的多重影响。展开更多
本文利用2005~2020年北京地区观测得到的辐射资料,揭示近十多年来北京地区紫外辐射的变化规律,同时对影响紫外辐射长期变化的主要因子进行了分析。结果表明,紫外辐射呈现出明显的日、季节变化特征。日变化呈现出单峰的变化规律,在正午...本文利用2005~2020年北京地区观测得到的辐射资料,揭示近十多年来北京地区紫外辐射的变化规律,同时对影响紫外辐射长期变化的主要因子进行了分析。结果表明,紫外辐射呈现出明显的日、季节变化特征。日变化呈现出单峰的变化规律,在正午时出现一天中的极大值,而早晚则是低值时段,极大值和极小值分别出现在中午12时(北京时,下同;16.26 W m^(−2))和上午08时(5.64 W m^(−2))。紫外辐射从春季开始逐渐增强,到夏季出现一年中的极大值,随后开始下降,直到冬季出现一年中的极小值,月均极大值和极小值分别出现在6月(12.17 W m^(−2))和12月(5.4 W m^(−2))。紫外辐射年均值为9.74 W m^(−2)。紫外辐射与晴空指数呈现正相关,与气溶胶光学厚度和大气细颗粒物PM_(2.5)呈现负相关。展开更多
文摘华北大气污染区域化正在对农业生态区域产生显著影响,为了了解华北农业地区大气细颗粒物PM_(2.5)的季节分布特征,2017年7月、9月、12月以及2018年4月在中国科学院禹城农业生态综合实验站进行分季节PM_(2.5)样品采集,并测定分析了样品中31种化学成分。结果表明,碳质气溶胶总体的浓度水平为13.11±8.37μg m^(−3),有机碳(OC)冬春季节浓度较高,元素碳(EC)浓度在秋冬季节较高。同时OC/EC的比值在秋季明显偏低,表明在秋季二次碳质气溶胶对PM_(2.5)贡献较小。水溶性离子浓度总体在冬季最高。NO_(3)^(-)/SO_(4)^(2-)比值在夏季明显偏低为0.69,华北地区夏季固定点源对大气污染的贡献相对较高。PM_(2.5)中金属元素以Na、Mg、Al、Ca、K、Fe等地壳元素为主,具有致癌风险的Co、Cr、Ni、Pb、As等金属元素年均浓度为0.32±0.24 ng m^(−3)、5.40±5.42 ng m^(−3)、10.23±7.46 ng m^(−3)、42.23±27.75 ng m^(−3)、5.66±3.79 ng m^(−3)。受体模型(PMF)计算结果表明,PM_(2.5)的主要来源为二次污染源、生物质燃烧源、燃煤燃油源、柴油车尾气和土壤源,贡献率分别达37.1%、18.2%、14.2%、9.4%和7.9%,表明农业区细颗粒物污染受到华北工业、农业与自然排放的多重影响。
文摘本文利用2005~2020年北京地区观测得到的辐射资料,揭示近十多年来北京地区紫外辐射的变化规律,同时对影响紫外辐射长期变化的主要因子进行了分析。结果表明,紫外辐射呈现出明显的日、季节变化特征。日变化呈现出单峰的变化规律,在正午时出现一天中的极大值,而早晚则是低值时段,极大值和极小值分别出现在中午12时(北京时,下同;16.26 W m^(−2))和上午08时(5.64 W m^(−2))。紫外辐射从春季开始逐渐增强,到夏季出现一年中的极大值,随后开始下降,直到冬季出现一年中的极小值,月均极大值和极小值分别出现在6月(12.17 W m^(−2))和12月(5.4 W m^(−2))。紫外辐射年均值为9.74 W m^(−2)。紫外辐射与晴空指数呈现正相关,与气溶胶光学厚度和大气细颗粒物PM_(2.5)呈现负相关。