Pyrolysis experiments of a typical printed circuit boards has been carried out under various conditions in a laboratory installation Liquid yield of 15%~21%, gas yield of 15%~20% and solid yield of about 60% were ob...Pyrolysis experiments of a typical printed circuit boards has been carried out under various conditions in a laboratory installation Liquid yield of 15%~21%, gas yield of 15%~20% and solid yield of about 60% were obtained The liquid products had high gross calorific values that might be recycled as fuel oils after simple treatment CO, CO 2 and N 2 were the main constitutes of the gas products Using combustion method, organic carbon of 7% in the solid products could be removed Then the solid products, which contained high purity fiberglass and CaCO 3, could be reused as filling materials in the process of SMC production In addition, the effects of final pyrolysis temperature (FPT) and particle size on pyrolysis products had been investigated The yield of gas products will be increased under high temperature and with powder展开更多
文摘Pyrolysis experiments of a typical printed circuit boards has been carried out under various conditions in a laboratory installation Liquid yield of 15%~21%, gas yield of 15%~20% and solid yield of about 60% were obtained The liquid products had high gross calorific values that might be recycled as fuel oils after simple treatment CO, CO 2 and N 2 were the main constitutes of the gas products Using combustion method, organic carbon of 7% in the solid products could be removed Then the solid products, which contained high purity fiberglass and CaCO 3, could be reused as filling materials in the process of SMC production In addition, the effects of final pyrolysis temperature (FPT) and particle size on pyrolysis products had been investigated The yield of gas products will be increased under high temperature and with powder
文摘为明确秸秆废弃物生物炭制备过程中的热解特性及其与生物炭产率之间的关联,探寻秸秆废弃物制备生物炭的最佳热解条件,以4种不同类型的秸秆废弃物为研究对象,通过热重模拟结合秸秆废弃物的组分特征,考察秸秆废弃物种类、热解终温、升温速率对秸秆废弃物热解特性及生物炭产率的影响.结果表明,4种秸秆废弃物在热解过程中其最大失重量和最大失重速率均出现在热解阶段,最大失重速率排序为:小麦秸秆>玉米秸秆>水稻秸秆>芦苇秸秆,与秸秆自身的纤维素含量相关.统计分析表明,秸秆废弃物种类、升温速率、热解终温、终温保持时间对生物炭产率均有显著影响.热解终温越高、升温速率越大、保留时间越长,生物炭产率越低.热解终温、升温速率对秸秆生物炭产率的影响规律均与热重模拟实验结果相吻合.综合热解特性、生物炭产率统计分析结果及能耗,选定生物炭的最佳制备条件为以10℃/min的升温速率升至500℃,保持30 min.