Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a cry...Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated.展开更多
In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr allo...In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr alloy. It was found that triple junctions with more random boundaries could be the primary nucleation sites for a new phase, while triple junctions with low angle or low ∑ coincidence boundaries did not play any role as preferential sites. The migration of α/γ interphase boundary during heating over the transformation temperature range showed the two stage behaviour characterized by a stage with a migration velocity of 0. 33-0. 75 mm/s and secondly by a stage with 3. 7-7. 6 mm/s. It was also found that abnormal grain growth and a high density of ∑3 coincidence boundaries could occur in a phase with bcc structure after cycling of α/γ phase transformation. A new mechanism of nucleation and growth of a new phase in α/γ phase transformation is proposed on the basis of roles of plane-matching interphase boundaries, as previously discussed on the origin of anisotropy of grain growth due to the migration of {110} plane-matching boundaries in Fe-3z%Si alloy. The most recent theoretical work on the distribution of plane-matching boundaries in solids with different crystal structures was found to be useful for the understanding of nucleation and growth during α/γ phase transformation.展开更多
基金Joint Seismological Science Foundation of China (101086) and the key project Digital Crustal and Mantle Structure of Chinese Mainland from China Earthquake Administration.
基金Project(11102164)supported by the National Natural Science Foundation of ChinaProject(G9KY101502)supported by NPU Foundation for Fundamental Research,China
文摘Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated.
文摘In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr alloy. It was found that triple junctions with more random boundaries could be the primary nucleation sites for a new phase, while triple junctions with low angle or low ∑ coincidence boundaries did not play any role as preferential sites. The migration of α/γ interphase boundary during heating over the transformation temperature range showed the two stage behaviour characterized by a stage with a migration velocity of 0. 33-0. 75 mm/s and secondly by a stage with 3. 7-7. 6 mm/s. It was also found that abnormal grain growth and a high density of ∑3 coincidence boundaries could occur in a phase with bcc structure after cycling of α/γ phase transformation. A new mechanism of nucleation and growth of a new phase in α/γ phase transformation is proposed on the basis of roles of plane-matching interphase boundaries, as previously discussed on the origin of anisotropy of grain growth due to the migration of {110} plane-matching boundaries in Fe-3z%Si alloy. The most recent theoretical work on the distribution of plane-matching boundaries in solids with different crystal structures was found to be useful for the understanding of nucleation and growth during α/γ phase transformation.