期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Filtering algorithm of line structured light for long-distance obstacle detection
1
作者 邵海燕 张振海 李科杰 《Journal of Beijing Institute of Technology》 EI CAS 2016年第4期521-525,共5页
Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structure... Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structured light image, a ranked-order based adaptively extremum median (RAEM) filter algorithm on salt and pepper noise is presented. In the algorithm, firstly effective points and noise points in a filtering window are differentiated; then the gray values of noise points are replaced by the medium of gray values of the effective pixels, with the efficient points' gray values unchanged; in the end this algorithm is proved to be efficient by experiments. Experimental resuits demonstrate that the image blur, resulting into proposed algorithm can remove noise points effectively and minimize the protecting the edge information as much as possible. 展开更多
关键词 unmanned ground vehicles line structured light concave and convex obstacles detec-tion ranked-order based adaptively extremum median (RAEM) filter filter algorithm
在线阅读 下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:2
2
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
在线阅读 下载PDF
An anti-aliasing filtering of quantum images in spatial domain using a pyramid structure
3
作者 吴凯 周日贵 罗佳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期223-237,共15页
As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most q... As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness. 展开更多
关键词 quantum color image processing anti-aliasing filtering algorithm quantum multiplier pyramid model
在线阅读 下载PDF
Multi-sensor Hybrid Fusion Algorithm Based on Adaptive Square-root Cubature Kalman Filter 被引量:6
4
作者 Xiaogong Lin Shusheng Xu Yehai Xie 《Journal of Marine Science and Application》 2013年第1期106-111,共6页
In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate r... In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms. 展开更多
关键词 hybrid fusion algorithm square-root cubature Kalman filter adaptive filter fault detection
在线阅读 下载PDF
Ensemble prediction modeling of flotation recovery based on machine learning
5
作者 Guichun He Mengfei Liu +1 位作者 Hongyu Zhao Kaiqi Huang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第12期1727-1740,共14页
With the rise of artificial intelligence(AI)in mineral processing,predicting the flotation indexes has attracted significant research attention.Nevertheless,current prediction models suffer from low accuracy and high ... With the rise of artificial intelligence(AI)in mineral processing,predicting the flotation indexes has attracted significant research attention.Nevertheless,current prediction models suffer from low accuracy and high prediction errors.Therefore,this paper utilizes a two-step procedure.First,the outliers are pro-cessed using the box chart method and filtering algorithm.Then,the decision tree(DT),support vector regression(SVR),random forest(RF),and the bagging,boosting,and stacking integration algorithms are employed to construct a flotation recovery prediction model.Extensive experiments compared the prediction accuracy of six modeling methods on flotation recovery and delved into the impact of diverse base model combinations on the stacking model’s prediction accuracy.In addition,field data have veri-fied the model’s effectiveness.This study demonstrates that the stacking ensemble approaches,which uses ten variables to predict flotation recovery,yields a more favorable prediction effect than the bagging ensemble approach and single models,achieving MAE,RMSE,R2,and MRE scores of 0.929,1.370,0.843,and 1.229%,respectively.The hit rates,within an error range of±2%and±4%,are 82.4%and 94.6%.Consequently,the prediction effect is relatively precise and offers significant value in the context of actual production. 展开更多
关键词 Machine learning STACKING BAGGING Flotation recovery rate filtering algorithm
在线阅读 下载PDF
Prediction of(n,2n)reaction cross-sections of long-lived fission products based on tensor model
6
作者 Jia-Li Huang Hui Wang +7 位作者 Ying-Ge Huang Er-Xi Xiao Yu-Jie Feng Xin Lei Fu-Chang Gu Long Zhu Yong-Jing Chen Jun Su 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第10期208-221,共14页
Interest has recently emerged in potential applications of(n,2n)reactions of unstable nuclei.Challenges have arisen because of the scarcity of experimental cross-sectional data.This study aims to predict the(n,2n)reac... Interest has recently emerged in potential applications of(n,2n)reactions of unstable nuclei.Challenges have arisen because of the scarcity of experimental cross-sectional data.This study aims to predict the(n,2n)reaction cross-section of long-lived fission products based on a tensor model.This tensor model is an extension of the collaborative filtering algorithm used for nuclear data.It is based on tensor decomposition and completion to predict(n,2n)reaction cross-sections;the corresponding EXFOR data are applied as training data.The reliability of the proposed tensor model was validated by comparing the calculations with data from EXFOR and different databases.Predictions were made for long-lived fission products such as^(60)Co,^(79)Se,^(93)Zr,^(107)P,^(126)Sn,and^(137)Cs,which provide a predicted energy range to effectively transmute long-lived fission products into shorter-lived or less radioactive isotopes.This method could be a powerful tool for completing(n,2n)reaction cross-sectional data and shows the possibility of selective transmutation of nuclear waste. 展开更多
关键词 (n 2n)Reaction cross-section Tensor model Machine learning Collaborative filtering algorithm Selective transmutation
在线阅读 下载PDF
Design of weak current measurement system and research on temperature impact 被引量:1
7
作者 Chu-Xiang Zhao San-Gang Li +8 位作者 Rong-Rong Su Li Yang Ming-Zhe Liu Qing-Yue Xue Shan Liao Zhi Zhou Qing-Shan Tan Xian-Guo Tuo Yi Cheng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期46-56,共11页
A dedicated weak current measurement system was designed to measure the weak currents generated by the neutron ionization chamber.This system incorporates a second-order low-pass filter circuit and the Kalman filterin... A dedicated weak current measurement system was designed to measure the weak currents generated by the neutron ionization chamber.This system incorporates a second-order low-pass filter circuit and the Kalman filtering algorithm to effectively filter out noise and minimize interference in the measurement results.Testing conducted under normal temperature conditions has demonstrated the system's high precision performance.However,it was observed that temperature variations can affect the measurement performance.Data were collected across temperatures ranging from -20 to 70℃,and a temperature correction model was established through linear regression fitting to address this issue.The feasibility of the temperature correction model was confirmed at temperatures of -5 and 40℃,where relative errors remained below 0.1% after applying the temperature correction.The research indicates that the designed measurement system exhibits excellent temperature adaptability and high precision,making it particularly suitable for measuring weak currents. 展开更多
关键词 Weak current measurement system Neutron ionization chamber Kalman filter algorithm Temperature correction model
在线阅读 下载PDF
APPLICATION OF INTERVAL KALMAN FILTER TO AN INTEGRATED GPS/INS SYSTEM 被引量:2
8
作者 何秀凤 陈永奇 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1999年第1期41-47,共7页
An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applica... An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applicable only to linear interval systems, the extended interval Kalman filter (EIKF) algorithm for non linear integrated systems is developed. A high dynamic aircraft trajectory is designed to test the algorithm developed. The results of computer simulation indicate that the EIKF algorithm is consistent with the traditional SKF scheme, and is also effective for uncertain non linear integrated system. 展开更多
关键词 GPS INS Kalman filter simulation filter algorithm
在线阅读 下载PDF
A better carbon-water flux simulation in multiple vegetation types by data assimilation 被引量:4
9
作者 Qiuyu Liu Tinglong Zhang +3 位作者 Mingxi Du Huanlin Gao Qingfeng Zhang Rui Sun 《Forest Ecosystems》 SCIE CSCD 2022年第1期131-145,共15页
Background:The accurate estimation of carbon-water flux is critical for understanding the carbon and water cycles of terrestrial ecosystems and further mitigating climate change.Model simulations and observations have... Background:The accurate estimation of carbon-water flux is critical for understanding the carbon and water cycles of terrestrial ecosystems and further mitigating climate change.Model simulations and observations have been widely used to research water and carbon cycles of terrestrial ecosystems.Given the advantages and limitations of each method,combining simulations and observations through a data assimilation technique has been proven to be highly promising for improving carbon-water flux simulation.However,to the best of our knowledge,few studies have accomplished both parameter optimization and the updating of model state variables through data assimilation for carbon-water flux simulation in multiple vegetation types.And little is known about the variation of the performance of data assimilation for carbon-water flux simulation in different vegetation types.Methods:In this study,we assimilated leaf area index(LAI)time-series observations into a biogeochemical model(Biome-BGC)using different assimilation algorithms(ensemble Kalman filter algorithm(EnKF)and unscented Kalman filter(UKF))in different vegetation types(deciduous broad-leaved forest(DBF),evergreen broad-leaved forest(EBF)and grassland(GL))to simulate carbon-water flux.Results:The validation of the results against the eddy covariance measurements indicated that,overall,compared with the original simulation,assimilating the LAI into the Biome-BGC model improved the carbon-water flux simulations(R^(2)increased by 35%,root mean square error decreased by 10%;the sum of the absolute error decreased by 8%)but more significantly,improved the water flux simulations(R^(2)increased by 31%,root mean square error decreased by 18%;the sum of the absolute error decreased by 16%).Among the different forest types,the data assimilation techniques(both EnKF and UKF)achieved the best performance towards carbon-water flux in EBF(R^(2)increased by 44%,root mean square error decreased by 24%;the sum of the absolute error decreased by 28%),and the performances of EnKF and UKF showed slightly different when simulating carbon fluxes.Conclusion:We suggest that to reduce the uncertainty in global carbon-water flux quantification,forthcoming data assimilation treatment should consider the vegetation types where the data assimilation experiments are carried out,the simulated objectives and the assimilation algorithms. 展开更多
关键词 Biome-BGC model Leaf area index EVAPOTRANSPIRATION Net ecosystem CO_(2)exchange Ensemble Kalman filter algorithm Unscented Kalman filter
在线阅读 下载PDF
Fusing Fixed and Hint Landmarks on Crowd Paths for Automatically Constructing Wi-Fi Fingerprint Database 被引量:2
10
作者 HUANG Zhengyong XIA Jun +3 位作者 YU Hui GUAN Yunfeng GAN Xiaoying LIU Jing 《China Communications》 SCIE CSCD 2015年第1期11-24,共14页
In typical Wi-Fi based indoor positioning systems employing fingerprint model,plentiful fingerprints need to be trained by trained experts or technician,which extends labor costs and restricts their promotion.In this ... In typical Wi-Fi based indoor positioning systems employing fingerprint model,plentiful fingerprints need to be trained by trained experts or technician,which extends labor costs and restricts their promotion.In this paper,a novel approach based on crowd paths to solve this problem is presented,which collects and constructs automatically fingerprints database for anonymous buildings through common crowd customers.However,the accuracy degradation problem may be introduced as crowd customers are not professional trained and equipped.Therefore,we define two concepts:fixed landmark and hint landmark,to rectify the fingerprint database in the practical system,in which common corridor crossing points serve as fixed landmark and cross point among different crowd paths serve as hint landmark.Machinelearning techniques are utilized for short range approximation around fixed landmarks and fuzzy logic decision technology is applied for searching hint landmarks in crowd traces space.Besides,the particle filter algorithm is also introduced to smooth the sample points in crowd paths.We implemented the approach on off-the-shelf smartphones and evaluate the performance.Experimental results indicate that the approach can availably construct WiFi fingerprint database without reduce the localization accuracy. 展开更多
关键词 indoor localization fingerprint database construction fixed landmarks hint landmarks particle filter algorithm
在线阅读 下载PDF
A Novel Shilling Attack Detection Model Based on Particle Filter and Gravitation 被引量:1
11
作者 Lingtao Qi Haiping Huang +2 位作者 Feng Li Reza Malekian Ruchuan Wang 《China Communications》 SCIE CSCD 2019年第10期112-132,共21页
With the rapid development of e-commerce, the security issues of collaborative filtering recommender systems have been widely investigated. Malicious users can benefit from injecting a great quantities of fake profile... With the rapid development of e-commerce, the security issues of collaborative filtering recommender systems have been widely investigated. Malicious users can benefit from injecting a great quantities of fake profiles into recommender systems to manipulate recommendation results. As one of the most important attack methods in recommender systems, the shilling attack has been paid considerable attention, especially to its model and the way to detect it. Among them, the loose version of Group Shilling Attack Generation Algorithm (GSAGenl) has outstanding performance. It can be immune to some PCC (Pearson Correlation Coefficient)-based detectors due to the nature of anti-Pearson correlation. In order to overcome the vulnerabilities caused by GSAGenl, a gravitation-based detection model (GBDM) is presented, integrated with a sophisticated gravitational detector and a decider. And meanwhile two new basic attributes and a particle filter algorithm are used for tracking prediction. And then, whether an attack occurs can be judged according to the law of universal gravitation in decision-making. The detection performances of GBDM, HHT-SVM, UnRAP, AP-UnRAP Semi-SAD,SVM-TIA and PCA-P are compared and evaluated. And simulation results show the effectiveness and availability of GBDM. 展开更多
关键词 shilling attack detection model collaborative filtering recommender systems gravitation-based detection model particle filter algorithm
在线阅读 下载PDF
Semantic Region Estimation of Assistant Robot for the Elderly Long-Term Operation in Indoor Environment 被引量:1
12
作者 Guanglei Huo Lijun Zhao +1 位作者 Ke Wang Ruifeng Li 《China Communications》 SCIE CSCD 2016年第5期1-15,共15页
In this work, in order to improve spatial recognition abilities for the long-term operation tasks of the assistant robot for the elderly, a novel approach of semantic region estimation is proposed. We define a novel g... In this work, in order to improve spatial recognition abilities for the long-term operation tasks of the assistant robot for the elderly, a novel approach of semantic region estimation is proposed. We define a novel graphbased semantic region descriptions, which are estimated in a dynamically fashion. We propose a two-level update algorithm, namely, Symbols update level and Regions update level. The algorithm firstly adopts particle filter to update weights of the symbols, and then use the Viterbi algorithm to estimate the region the robot stays in based on those weights, optimally. Experimental results demonstrate that our proposed approach can solve problems of the long-term operation and kidnapped robot problem. 展开更多
关键词 service robot semantic region estimation particle filter viterbi algorithm long-term tasks
在线阅读 下载PDF
Obstacle avoidance technology of bionic quadruped robot based on multi-sensor information fusion
13
作者 韩宝玲 张天 +2 位作者 罗庆生 朱颖 宋明辉 《Journal of Beijing Institute of Technology》 EI CAS 2016年第4期448-454,共7页
In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was stu... In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was studied under the condition that the robot moves in the Walk gait on a structured road. Firstly, the distance information of obstacles from these two sensors was separately processed by the Kalman filter algorithm, which largely reduced the noise interference. After that, we obtained two groups of estimated distance values from the robot to the obstacle and a variance of the estimation value. Additionally, a fusion of the estimation values and the variances was achieved based on the STF fusion algorithm. Finally, a simulation was performed to show that the curve of a real value was tracked well by that of the estimation value, which attributes to the effectiveness of the Kalman filter algorithm. In contrast to statistics before fusion, the fusion variance of the estimation value was sharply decreased. The precision of the position information is 4. 6 cm, which meets the application requirements of the robot. 展开更多
关键词 MULTI-SENSOR Kalman filter algorithm constant velocity (CV) model STF fusion algo-rithm obstacle avoidance of robot
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部