Focusing on the issue to deal with inadequate extraction of metallogenic information especially geological information,a new method of extracting metallogenic information based on field model,i.e.the field analysis me...Focusing on the issue to deal with inadequate extraction of metallogenic information especially geological information,a new method of extracting metallogenic information based on field model,i.e.the field analysis method of metallogenic information,was proposed.In addition,a case study by using the method of the extraction of metallogenic information from the west Guangxi and southeast Yunnan district as an example was performed.The representation method for the field models of metallogenic information,including the metallogenic influence field model and the metallogenic distance field model,was discussed by introducing the concept of the field theory,based on the characteristic analysis of the distance gradualness and the influence superposition of metallogenic information.According to the field theory superposition principle and the spatial distance analysis method,the mathematical models for the metallogenic influence field and the metallogenic distance field of point,line and area geological bodies were derived out by using parameter equation and calculus.Based on the metallogenic background analysis,the metallogenic information field models of synsedimentary faults and manganese sedimentary basins were built.The relationship between the metallogenic information fields and the manganese mineralization distribution was also investigated by using the method of metallogenic information field analysis.The instance study indicates that the proposed method of metallogenic information field analysis is valid and useful for extracting the ore-controlling information of synsedimentary faults and manganese sedimentary basins in the study area,with which the extraction results are significant both statistically and geologically.展开更多
The Wilson coefficients of the standard model effective field theory are subject to a series of positivity bounds.It has been shown that while the positivity part of the ultraviolet(UV)partial wave unitarity leads to ...The Wilson coefficients of the standard model effective field theory are subject to a series of positivity bounds.It has been shown that while the positivity part of the ultraviolet(UV)partial wave unitarity leads to the Wilson coefficients living in a convex cone,further including the nonpositivity part caps the cone from above.For Higgs scattering,a capped positivity cone was obtained using a simplified,linear unitarity condition without utilizing the full internal symmetries of Higgs scattering.Here,we further implement stronger nonlinear unitarity conditions from the UV,which generically gives rise to better bounds.We show that,for the Higgs case in particular,while the nonlinear unitarity conditions per se do not enhance the bounds,the fuller use of the internal symmetries do shrink the capped positivity cone significantly.展开更多
The Taiji-1 satellite is a pilot satellite mission of Taiji program,which is used to verify Taiji’s key technology and also to testify the feasibility of Taiji roadmap.Taiji-1 was launched on 31 August 2019 and its d...The Taiji-1 satellite is a pilot satellite mission of Taiji program,which is used to verify Taiji’s key technology and also to testify the feasibility of Taiji roadmap.Taiji-1 was launched on 31 August 2019 and its designed mission was successfully completed.The in-orbit scientific achievements of Taiji-1 satellite in the first stage have been published and now it has entered the extended task phase.Taiji-2 will prepare all the technology needed by Taiji-3,and remove all the technical obstacles faced by Taiji-3.展开更多
The CSES(China Seismo-Electromagnetic Satellite)is the electromagnetism satellite of China’s Zhangheng mission which is planned to launch a series of microsatellites within next 10 years in order to monitor the elect...The CSES(China Seismo-Electromagnetic Satellite)is the electromagnetism satellite of China’s Zhangheng mission which is planned to launch a series of microsatellites within next 10 years in order to monitor the electromagnetic environment,gravitational field.The CSES 01 probe(also called ZH-1)was launched successfully on 2 February 2018,from the Jiuquan Satellite Launch Centre(China)and is expected to operate for 5 years in orbit.The second probe CSES 02 is going to be launched in 2022.The scientific objectives of CSES are to detect the electromagnetic field and waves,plasma and particles,for studying the seismic-associated disturbances.To meet the requirements of scientific objective,the satellite is designed to be in a sun-synchronous orbit with a high inclination of 97.4°at an altitude around 507 km.CSES carries nine scientific payloads including Search-coil magnetometer,Electric Field Detector,High precision Magnetometer,GNSS occultation Receiver,Plasma Analyzer,Langmuir Probe,two Energetic Particle Detectors(including an Italian one),and Tri-Band Transmitter.Up to now,CSES has been operating in orbit for 2 years with stable and reliable performance.By using all kinds of data acquired by CSES,we have undertaken a series of scientific researches in the field of global geomagnetic field re-building,the ionospheric variation environment,waves,and particle precipitations under disturbed space weather and earthquake activities,the Lithosphere-Atmosphere-Ionosphere coupling mechanism research and so on.展开更多
The main principle and mathematical model of GOCE kinematic orbit adjustment for Earth gravity field model (EGM) validation and accelerometer calibration are presented. Based on 60 days GOCE kinematic orbits with 1-...The main principle and mathematical model of GOCE kinematic orbit adjustment for Earth gravity field model (EGM) validation and accelerometer calibration are presented. Based on 60 days GOCE kinematic orbits with 1-2 cm accuracy and accelerometer data from 2009-11-02 to 2009-12-31, the RMS-of-fit (ROF) of them using EGM2008, EIGEN-SC, ITG- GRACE2010S and GOCO01S up to 120, 150 and 180 degree and order (d/o) are evaluated and compared. The scale factors and biases of GOCE accelerometer data are calibrated and the energy balance method (EBM) is performed to test the accuracy of accelerometer calibration. The results show that GOCE orbits are also sensitive to EGM from 120 to 150 d/o. The ROFs of EGMs with 150 and 180 d/o are obviously better than those of EGMs with 120 d/o. The ROFs of GOCO01S and ITG-GRACE2010S are almost the same up to 120 and 150 d/o, which are about 3.3 cm and 1.8 cm, respectively. They are far better than those of EGM2008 and EIGEN-SC with the same d/o. The ROF of GOCO01S with 180 d/o is about 1.6 em, which is the best one among those EGMs. The accelerometer calibration accuracies (ACAs) of ITG-GRACE2010S and GOCO01S are obviously higher that those of EGM2008 and EIGEN-SC. The ACA of GOCO01S with 180 d/o is far higher than that of EGMs with 120 d/o, and a little higher than that of ITG-GRACE2010S with 150 d/o. I t is suggested that the newest released EGM such as GOCO01S or GOCO02S till at least 150 d/o should be chosen in GOCE precise orbit determination (POD) and accelerometer calibration.展开更多
The impact of ERS-1 altimeter significant wave height on analysis of wave field and wave pre- dictions is tested through analysis of selected cases. Application of the altimeter data may modifg initial tield and thus ...The impact of ERS-1 altimeter significant wave height on analysis of wave field and wave pre- dictions is tested through analysis of selected cases. Application of the altimeter data may modifg initial tield and thus 24-hour prediction of significant wave height. However the variations in initial wave field almost make no effect on 48-hour predictions.展开更多
基金Project(2006BAB01B07) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period of China
文摘Focusing on the issue to deal with inadequate extraction of metallogenic information especially geological information,a new method of extracting metallogenic information based on field model,i.e.the field analysis method of metallogenic information,was proposed.In addition,a case study by using the method of the extraction of metallogenic information from the west Guangxi and southeast Yunnan district as an example was performed.The representation method for the field models of metallogenic information,including the metallogenic influence field model and the metallogenic distance field model,was discussed by introducing the concept of the field theory,based on the characteristic analysis of the distance gradualness and the influence superposition of metallogenic information.According to the field theory superposition principle and the spatial distance analysis method,the mathematical models for the metallogenic influence field and the metallogenic distance field of point,line and area geological bodies were derived out by using parameter equation and calculus.Based on the metallogenic background analysis,the metallogenic information field models of synsedimentary faults and manganese sedimentary basins were built.The relationship between the metallogenic information fields and the manganese mineralization distribution was also investigated by using the method of metallogenic information field analysis.The instance study indicates that the proposed method of metallogenic information field analysis is valid and useful for extracting the ore-controlling information of synsedimentary faults and manganese sedimentary basins in the study area,with which the extraction results are significant both statistically and geologically.
基金supported by the Fundamental Research Funds for the Central Universities(WK2030000036)the National Natural Science Foundation of China(12075233).
文摘The Wilson coefficients of the standard model effective field theory are subject to a series of positivity bounds.It has been shown that while the positivity part of the ultraviolet(UV)partial wave unitarity leads to the Wilson coefficients living in a convex cone,further including the nonpositivity part caps the cone from above.For Higgs scattering,a capped positivity cone was obtained using a simplified,linear unitarity condition without utilizing the full internal symmetries of Higgs scattering.Here,we further implement stronger nonlinear unitarity conditions from the UV,which generically gives rise to better bounds.We show that,for the Higgs case in particular,while the nonlinear unitarity conditions per se do not enhance the bounds,the fuller use of the internal symmetries do shrink the capped positivity cone significantly.
基金Supported by Strategic Priority Research Program of the Chinese Academy of Sciences(XDA15021100)。
文摘The Taiji-1 satellite is a pilot satellite mission of Taiji program,which is used to verify Taiji’s key technology and also to testify the feasibility of Taiji roadmap.Taiji-1 was launched on 31 August 2019 and its designed mission was successfully completed.The in-orbit scientific achievements of Taiji-1 satellite in the first stage have been published and now it has entered the extended task phase.Taiji-2 will prepare all the technology needed by Taiji-3,and remove all the technical obstacles faced by Taiji-3.
基金Supported by National Key R&D Program of China(2018YFC1503501)Research Grant from Institute of Crustal Dynamics,China Earthquake Administration(ZDJ2019-22 and ZDJ2020-06)the APSCO Earthquake Research Project PhaseⅡ。
文摘The CSES(China Seismo-Electromagnetic Satellite)is the electromagnetism satellite of China’s Zhangheng mission which is planned to launch a series of microsatellites within next 10 years in order to monitor the electromagnetic environment,gravitational field.The CSES 01 probe(also called ZH-1)was launched successfully on 2 February 2018,from the Jiuquan Satellite Launch Centre(China)and is expected to operate for 5 years in orbit.The second probe CSES 02 is going to be launched in 2022.The scientific objectives of CSES are to detect the electromagnetic field and waves,plasma and particles,for studying the seismic-associated disturbances.To meet the requirements of scientific objective,the satellite is designed to be in a sun-synchronous orbit with a high inclination of 97.4°at an altitude around 507 km.CSES carries nine scientific payloads including Search-coil magnetometer,Electric Field Detector,High precision Magnetometer,GNSS occultation Receiver,Plasma Analyzer,Langmuir Probe,two Energetic Particle Detectors(including an Italian one),and Tri-Band Transmitter.Up to now,CSES has been operating in orbit for 2 years with stable and reliable performance.By using all kinds of data acquired by CSES,we have undertaken a series of scientific researches in the field of global geomagnetic field re-building,the ionospheric variation environment,waves,and particle precipitations under disturbed space weather and earthquake activities,the Lithosphere-Atmosphere-Ionosphere coupling mechanism research and so on.
基金Project(41174008)supported by the National Natural Science Foundation of ChinaProject(SKLGED2013-4-2-EZ)supported by the Open Foundation of State Key Laboratory of Geodesy and Earth’s Dynamics,ChinaProject(2007B51)supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘The main principle and mathematical model of GOCE kinematic orbit adjustment for Earth gravity field model (EGM) validation and accelerometer calibration are presented. Based on 60 days GOCE kinematic orbits with 1-2 cm accuracy and accelerometer data from 2009-11-02 to 2009-12-31, the RMS-of-fit (ROF) of them using EGM2008, EIGEN-SC, ITG- GRACE2010S and GOCO01S up to 120, 150 and 180 degree and order (d/o) are evaluated and compared. The scale factors and biases of GOCE accelerometer data are calibrated and the energy balance method (EBM) is performed to test the accuracy of accelerometer calibration. The results show that GOCE orbits are also sensitive to EGM from 120 to 150 d/o. The ROFs of EGMs with 150 and 180 d/o are obviously better than those of EGMs with 120 d/o. The ROFs of GOCO01S and ITG-GRACE2010S are almost the same up to 120 and 150 d/o, which are about 3.3 cm and 1.8 cm, respectively. They are far better than those of EGM2008 and EIGEN-SC with the same d/o. The ROF of GOCO01S with 180 d/o is about 1.6 em, which is the best one among those EGMs. The accelerometer calibration accuracies (ACAs) of ITG-GRACE2010S and GOCO01S are obviously higher that those of EGM2008 and EIGEN-SC. The ACA of GOCO01S with 180 d/o is far higher than that of EGMs with 120 d/o, and a little higher than that of ITG-GRACE2010S with 150 d/o. I t is suggested that the newest released EGM such as GOCO01S or GOCO02S till at least 150 d/o should be chosen in GOCE precise orbit determination (POD) and accelerometer calibration.
文摘The impact of ERS-1 altimeter significant wave height on analysis of wave field and wave pre- dictions is tested through analysis of selected cases. Application of the altimeter data may modifg initial tield and thus 24-hour prediction of significant wave height. However the variations in initial wave field almost make no effect on 48-hour predictions.