基于垂直双扩散金属氧化物(VDMOS)场效应晶体管终端场限环(FLR)与场板(FP)理论,在场限环上依次添加金属场板与多晶硅场板,并通过软件仿真对其进行参数优化,最终实现了一款700 V VDMOS终端结构的优化设计。对比场限环终端结构,金属场板...基于垂直双扩散金属氧化物(VDMOS)场效应晶体管终端场限环(FLR)与场板(FP)理论,在场限环上依次添加金属场板与多晶硅场板,并通过软件仿真对其进行参数优化,最终实现了一款700 V VDMOS终端结构的优化设计。对比场限环终端结构,金属场板与多晶硅复合场板的终端结构,能够更加有效地降低表面电场峰值,增强环间耐压能力,从而减少场限环个数并增大终端击穿电压。终端有效长度仅为145μm,击穿电压能够达到855.0 V,表面电场最大值为2.0×105V/cm,且分布比较均匀,终端稳定性和可靠性高。此外,没有增加额外掩膜和其他工艺步骤,工艺兼容性好,易于实现。展开更多
与传统硅基功率二极管相比,碳化硅肖特基势垒二极管(SiC SBD)可提高开关频率并大幅减小开关损耗,同时有更高的耐压范围。设计并制作了具有场限环结终端和Ti肖特基接触的1.2 kV/30 A SiC SBD器件,研究了该SiC SBD在100~300℃时的反向恢...与传统硅基功率二极管相比,碳化硅肖特基势垒二极管(SiC SBD)可提高开关频率并大幅减小开关损耗,同时有更高的耐压范围。设计并制作了具有场限环结终端和Ti肖特基接触的1.2 kV/30 A SiC SBD器件,研究了该SiC SBD在100~300℃时的反向恢复特性。实验结果表明,温度每上升100℃,SiC SBD反向电压峰值增幅为5%左右,而反向恢复电流与反向恢复时间受温度影响不大;温度每升高50℃,反向恢复损耗功率峰值降低5%。实验结果表明该SiC SBD在高温下能够稳定工作,且具有良好的反向恢复特性,适用于卫星、航空和航天探测、石油以及地热钻井探测等需要大功率、耐高温和高速器件的领域。展开更多
垂直双扩散金属-氧化物半导体场效应管(VDMOS)器件的反向耐压能力主要取决于器件结构中的特定pn结反偏击穿电压,由于pn结特性,击穿通常发生在结终端。随着结终端技术的发展,功率VDMOS器件的击穿特性有了很大的提升。主要介绍了几种目前...垂直双扩散金属-氧化物半导体场效应管(VDMOS)器件的反向耐压能力主要取决于器件结构中的特定pn结反偏击穿电压,由于pn结特性,击穿通常发生在结终端。随着结终端技术的发展,功率VDMOS器件的击穿特性有了很大的提升。主要介绍了几种目前常用的结终端技术的结构及工作原理,包括场限环技术、p+偏移技术、横向变掺杂技术、结终端扩展技术和RESURF技术。重点探讨了每种方法的优缺点,并指出几种结终端技术不同的设计难度、工艺控制和实现要点等。同时固定元胞设计,采用不同的结终端技术试制了600 V VDMOS产品,对比了采用不同结终端技术制作芯片的工艺制造以及成本,可为实际的制造生产提供理论指导。展开更多
文摘基于垂直双扩散金属氧化物(VDMOS)场效应晶体管终端场限环(FLR)与场板(FP)理论,在场限环上依次添加金属场板与多晶硅场板,并通过软件仿真对其进行参数优化,最终实现了一款700 V VDMOS终端结构的优化设计。对比场限环终端结构,金属场板与多晶硅复合场板的终端结构,能够更加有效地降低表面电场峰值,增强环间耐压能力,从而减少场限环个数并增大终端击穿电压。终端有效长度仅为145μm,击穿电压能够达到855.0 V,表面电场最大值为2.0×105V/cm,且分布比较均匀,终端稳定性和可靠性高。此外,没有增加额外掩膜和其他工艺步骤,工艺兼容性好,易于实现。
文摘与传统硅基功率二极管相比,碳化硅肖特基势垒二极管(SiC SBD)可提高开关频率并大幅减小开关损耗,同时有更高的耐压范围。设计并制作了具有场限环结终端和Ti肖特基接触的1.2 kV/30 A SiC SBD器件,研究了该SiC SBD在100~300℃时的反向恢复特性。实验结果表明,温度每上升100℃,SiC SBD反向电压峰值增幅为5%左右,而反向恢复电流与反向恢复时间受温度影响不大;温度每升高50℃,反向恢复损耗功率峰值降低5%。实验结果表明该SiC SBD在高温下能够稳定工作,且具有良好的反向恢复特性,适用于卫星、航空和航天探测、石油以及地热钻井探测等需要大功率、耐高温和高速器件的领域。
文摘垂直双扩散金属-氧化物半导体场效应管(VDMOS)器件的反向耐压能力主要取决于器件结构中的特定pn结反偏击穿电压,由于pn结特性,击穿通常发生在结终端。随着结终端技术的发展,功率VDMOS器件的击穿特性有了很大的提升。主要介绍了几种目前常用的结终端技术的结构及工作原理,包括场限环技术、p+偏移技术、横向变掺杂技术、结终端扩展技术和RESURF技术。重点探讨了每种方法的优缺点,并指出几种结终端技术不同的设计难度、工艺控制和实现要点等。同时固定元胞设计,采用不同的结终端技术试制了600 V VDMOS产品,对比了采用不同结终端技术制作芯片的工艺制造以及成本,可为实际的制造生产提供理论指导。