Separation of particles from liquid in the large gravitational tanks is widely used in mining and industrial wastewater treatment process.Thickener is key unit in the operational processes of hydrometallurgy and is us...Separation of particles from liquid in the large gravitational tanks is widely used in mining and industrial wastewater treatment process.Thickener is key unit in the operational processes of hydrometallurgy and is used to separate solid from liquid.In this study,population balance models were combined with computational fluid dynamics(CFD)for modeling the tailing thickener.Parameters such as feed flow rate,flocculant dosage,inlet solid percent and feedwell were investigated.CFD was used to simulate the industrial tailing thickener with settled bed of 120 m diameter which is located in the Sarcheshmeh copper mine.Important factor of drag force that defines the rake torque of rotating paddles on the bed was also determined.Two phases turbulence model of Eulerian/Eulerian in accordance with turbulence model ofκ-ε.was used in the steady-state.Also population balance model consists of 15 groups of particle sizes with Luo and Lehr kernel was used for aggregation/breakage kernel.The simulation results showed good agreement with the operational data.展开更多
Thickeners are important units for water recovery in various industries. In this study, a semi-industrial pilot plant thickener similar to the tailing thickener of the Sarcheshmeh Copper Mine was simulated by CFD mode...Thickeners are important units for water recovery in various industries. In this study, a semi-industrial pilot plant thickener similar to the tailing thickener of the Sarcheshmeh Copper Mine was simulated by CFD modeling. The population balance was used to describe the particle aggregation and breakup. In this population balance, 15 particle sizes categories were considered. The Eulerian-Eulerian approach with standard k-e turbulence model was applied to describe two phases of slurry flow in the thickener under steady-state condition. The simulation results have been compared with the experimental measurements to validate the accuracy of the CFD modeling. After checking the numerical results, the effect of important parameters such as, feed flow rate, solid percentage in the feed, and solid particle size on the thickener performance was studied. The thickener residence time distribution were obtained by the modeling and also compared with the experimental data. Finally, the effects of feedwell feeding on the average diameter of aggregate and turbulent intensity were evaluated.展开更多
文摘Separation of particles from liquid in the large gravitational tanks is widely used in mining and industrial wastewater treatment process.Thickener is key unit in the operational processes of hydrometallurgy and is used to separate solid from liquid.In this study,population balance models were combined with computational fluid dynamics(CFD)for modeling the tailing thickener.Parameters such as feed flow rate,flocculant dosage,inlet solid percent and feedwell were investigated.CFD was used to simulate the industrial tailing thickener with settled bed of 120 m diameter which is located in the Sarcheshmeh copper mine.Important factor of drag force that defines the rake torque of rotating paddles on the bed was also determined.Two phases turbulence model of Eulerian/Eulerian in accordance with turbulence model ofκ-ε.was used in the steady-state.Also population balance model consists of 15 groups of particle sizes with Luo and Lehr kernel was used for aggregation/breakage kernel.The simulation results showed good agreement with the operational data.
文摘Thickeners are important units for water recovery in various industries. In this study, a semi-industrial pilot plant thickener similar to the tailing thickener of the Sarcheshmeh Copper Mine was simulated by CFD modeling. The population balance was used to describe the particle aggregation and breakup. In this population balance, 15 particle sizes categories were considered. The Eulerian-Eulerian approach with standard k-e turbulence model was applied to describe two phases of slurry flow in the thickener under steady-state condition. The simulation results have been compared with the experimental measurements to validate the accuracy of the CFD modeling. After checking the numerical results, the effect of important parameters such as, feed flow rate, solid percentage in the feed, and solid particle size on the thickener performance was studied. The thickener residence time distribution were obtained by the modeling and also compared with the experimental data. Finally, the effects of feedwell feeding on the average diameter of aggregate and turbulent intensity were evaluated.