Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless channel.In this paper,a robust transmission sche...Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless channel.In this paper,a robust transmission scheme for an AirCompbased FL system with imperfect channel state information(CSI)is proposed.To model CSI uncertainty,an expectation-based error model is utilized.The main objective is to maximize the number of selected devices that meet mean-squared error(MSE)requirements for model broadcast and model aggregation.The problem is formulated as a combinatorial optimization problem and is solved in two steps.First,the priority order of devices is determined by a sparsity-inducing procedure.Then,a feasibility detection scheme is used to select the maximum number of devices to guarantee that the MSE requirements are met.An alternating optimization(AO)scheme is used to transform the resulting nonconvex problem into two convex subproblems.Numerical results illustrate the effectiveness and robustness of the proposed scheme.展开更多
Federated learning(FL)is a distributed machine learning paradigm that excels at preserving data privacy when using data from multiple parties.When combined with Fog Computing,FL offers enhanced capabilities for machin...Federated learning(FL)is a distributed machine learning paradigm that excels at preserving data privacy when using data from multiple parties.When combined with Fog Computing,FL offers enhanced capabilities for machine learning applications in the Internet of Things(IoT).However,implementing FL across large-scale distributed fog networks presents significant challenges in maintaining privacy,preventing collusion attacks,and ensuring robust data aggregation.To address these challenges,we propose an Efficient Privacy-preserving and Robust Federated Learning(EPRFL)scheme for fog computing scenarios.Specifically,we first propose an efficient secure aggregation strategy based on the improved threshold homomorphic encryption algorithm,which is not only resistant to model inference and collusion attacks,but also robust to fog node dropping.Then,we design a dynamic gradient filtering method based on cosine similarity to further reduce the communication overhead.To minimize training delays,we develop a dynamic task scheduling strategy based on comprehensive score.Theoretical analysis demonstrates that EPRFL offers robust security and low latency.Extensive experimental results indicate that EPRFL outperforms similar strategies in terms of privacy preserving,model performance,and resource efficiency.展开更多
Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure ...Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms.展开更多
In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amount...In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles,renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model,and the vehicle may also be affected by Byzantine attacks,leading to the deterioration of the vehicle data.However,based on deep reinforcement learning(DRL),we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL.At the same time,when aggregating AFL,we can focus on those vehicles with better performance to improve the accuracy and safety of the system.In this paper,we proposed a vehicle selection scheme based on DRL in VEC.In this scheme,vehicle’s mobility,channel conditions with temporal variations,computational resources with temporal variations,different data amount,transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model.展开更多
The literary federation system is a cultural system with Chinese characteristics. The Chinese characteristics of the literary federation system are mainly embodied in: it is the embodiment of the United Front under th...The literary federation system is a cultural system with Chinese characteristics. The Chinese characteristics of the literary federation system are mainly embodied in: it is the embodiment of the United Front under the leadership of the Communist Party of China in the field of literature and art, an important system to promote the popularization of literature and art, and a supplement to the system of honors in the cultural field of new China.展开更多
Human mobility prediction is important for many applications.However,training an accurate mobility prediction model requires a large scale of human trajectories,where privacy issues become an important problem.The ris...Human mobility prediction is important for many applications.However,training an accurate mobility prediction model requires a large scale of human trajectories,where privacy issues become an important problem.The rising federated learning provides us with a promising solution to this problem,which enables mobile devices to collaboratively learn a shared prediction model while keeping all the training data on the device,decoupling the ability to do machine learning from the need to store the data in the cloud.However,existing federated learningbased methods either do not provide privacy guarantees or have vulnerability in terms of privacy leakage.In this paper,we combine the techniques of data perturbation and model perturbation mechanisms and propose a privacy-preserving mobility prediction algorithm,where we add noise to the transmitted model and the raw data collaboratively to protect user privacy and keep the mobility prediction performance.Extensive experimental results show that our proposed method significantly outperforms the existing stateof-the-art mobility prediction method in terms of defensive performance against practical attacks while having comparable mobility prediction performance,demonstrating its effectiveness.展开更多
With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detecti...With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detection accuracy,but collecting samples for centralized training brings the huge risk of data privacy leakage.Furthermore,the training of supervised deep learning models requires a large number of labeled samples,which is usually cumbersome.The“black-box”problem also makes the DL models of NIDS untrustworthy.In this paper,we propose a trusted Federated Learning(FL)Traffic IDS method called FL-TIDS to address the above-mentioned problems.In FL-TIDS,we design an unsupervised intrusion detection model based on autoencoders that alleviates the reliance on marked samples.At the same time,we use FL for model training to protect data privacy.In addition,we design an improved SHAP interpretable method based on chi-square test to perform interpretable analysis of the trained model.We conducted several experiments to evaluate the proposed FL-TIDS.We first determine experimentally the structure and the number of neurons of the unsupervised AE model.Secondly,we evaluated the proposed method using the UNSW-NB15 and CICIDS2017 datasets.The exper-imental results show that the unsupervised AE model has better performance than the other 7 intrusion detection models in terms of precision,recall and f1-score.Then,federated learning is used to train the intrusion detection model.The experimental results indicate that the model is more accurate than the local learning model.Finally,we use an improved SHAP explainability method based on Chi-square test to analyze the explainability.The analysis results show that the identification characteristics of the model are consistent with the attack characteristics,and the model is reliable.展开更多
To protect vehicular privacy and speed up the execution of tasks,federated learning is introduced in the Internet of Vehicles(IoV)where users execute model training locally and upload local models to the base station ...To protect vehicular privacy and speed up the execution of tasks,federated learning is introduced in the Internet of Vehicles(IoV)where users execute model training locally and upload local models to the base station without massive raw data exchange.However,heterogeneous computing and communication resources of vehicles cause straggler effect which weakens the reliability of federated learning.Dropping out vehicles with limited resources confines the training data.As a result,the accuracy and applicability of federated learning models will be reduced.To mitigate the straggler effect and improve performance of federated learning,we propose a reconfigurable intelligent surface(RIS)-assisted federated learning framework to enhance the communication reliability for parameter transmission in the IoV.Furthermore,we optimize the phase shift of RIS to achieve a more reliable communication environment.In addition,we define vehicular competence to measure both vehicular trustworthiness and resources.Based on the vehicular competence,the straggler effect is mitigated where training tasks of computing stragglers are offloaded to surrounding vehicles with high competence.The experiment results verify that our proposed framework can improve the reliability of federated learning in terms of computing and communication in the IoV.展开更多
As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dim...As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dimensional stochastic gradients to edge server in training,which cause severe communication bottleneck.To address this problem,we compress the communication by sparsifying and quantizing the stochastic gradients of edge devices.We first derive a closed form of the communication compression in terms of sparsification and quantization factors.Then,the convergence rate of this communicationcompressed system is analyzed and several insights are obtained.Finally,we formulate and deal with the quantization resource allocation problem for the goal of minimizing the convergence upper bound,under the constraint of multiple-access channel capacity.Simulations show that the proposed scheme outperforms the benchmarks.展开更多
In the context of edge computing environments in general and the metaverse in particular,federated learning(FL)has emerged as a distributed machine learning paradigm that allows multiple users to collaborate on traini...In the context of edge computing environments in general and the metaverse in particular,federated learning(FL)has emerged as a distributed machine learning paradigm that allows multiple users to collaborate on training a shared machine learning model locally,eliminating the need for uploading raw data to a central server.It is perhaps the only training paradigm that preserves the privacy of user data,which is essential for computing environments as personal as the metaverse.However,the original FL architecture proposed is not scalable to a large number of user devices in the metaverse community.To mitigate this problem,hierarchical federated learning(HFL)has been introduced as a general distributed learning paradigm,inspiring a number of research works.In this paper,we present several types of HFL architectures,with a special focus on the three-layer client-edge-cloud HFL architecture,which is most pertinent to the metaverse due to its delay-sensitive nature.We also examine works that take advantage of the natural layered organization of three-layer client-edge-cloud HFL to tackle some of the most challenging problems in FL within the metaverse.Finally,we outline some future research directions of HFL in the metaverse.展开更多
As an important branch of federated learning,vertical federated learning(VFL)enables multiple institutions to train on the same user samples,bringing considerable industry benefits.However,VFL needs to exchange user f...As an important branch of federated learning,vertical federated learning(VFL)enables multiple institutions to train on the same user samples,bringing considerable industry benefits.However,VFL needs to exchange user features among multiple institutions,which raises concerns about privacy leakage.Moreover,existing multi-party VFL privacy-preserving schemes suffer from issues such as poor reli-ability and high communication overhead.To address these issues,we propose a privacy protection scheme for four institutional VFLs,named FVFL.A hierarchical framework is first introduced to support federated training among four institutions.We also design a verifiable repli-cated secret sharing(RSS)protocol(32)-sharing and combine it with homomorphic encryption to ensure the reliability of FVFL while ensuring the privacy of features and intermediate results of the four institutions.Our theoretical analysis proves the reliability and security of the pro-posed FVFL.Extended experiments verify that the proposed scheme achieves excellent performance with a low communication overhead.展开更多
文摘Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless channel.In this paper,a robust transmission scheme for an AirCompbased FL system with imperfect channel state information(CSI)is proposed.To model CSI uncertainty,an expectation-based error model is utilized.The main objective is to maximize the number of selected devices that meet mean-squared error(MSE)requirements for model broadcast and model aggregation.The problem is formulated as a combinatorial optimization problem and is solved in two steps.First,the priority order of devices is determined by a sparsity-inducing procedure.Then,a feasibility detection scheme is used to select the maximum number of devices to guarantee that the MSE requirements are met.An alternating optimization(AO)scheme is used to transform the resulting nonconvex problem into two convex subproblems.Numerical results illustrate the effectiveness and robustness of the proposed scheme.
基金supported in part by the National Natural Science Foundation of China(62462053)the Science and Technology Foundation of Qinghai Province(2023-ZJ-731)+1 种基金the Open Project of the Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Area(2023-KF-12)the Open Research Fund of Guangdong Key Laboratory of Blockchain Security,Guangzhou University。
文摘Federated learning(FL)is a distributed machine learning paradigm that excels at preserving data privacy when using data from multiple parties.When combined with Fog Computing,FL offers enhanced capabilities for machine learning applications in the Internet of Things(IoT).However,implementing FL across large-scale distributed fog networks presents significant challenges in maintaining privacy,preventing collusion attacks,and ensuring robust data aggregation.To address these challenges,we propose an Efficient Privacy-preserving and Robust Federated Learning(EPRFL)scheme for fog computing scenarios.Specifically,we first propose an efficient secure aggregation strategy based on the improved threshold homomorphic encryption algorithm,which is not only resistant to model inference and collusion attacks,but also robust to fog node dropping.Then,we design a dynamic gradient filtering method based on cosine similarity to further reduce the communication overhead.To minimize training delays,we develop a dynamic task scheduling strategy based on comprehensive score.Theoretical analysis demonstrates that EPRFL offers robust security and low latency.Extensive experimental results indicate that EPRFL outperforms similar strategies in terms of privacy preserving,model performance,and resource efficiency.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(Grant No.2022D01B 187)。
文摘Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms.
基金supported in part by the National Natural Science Foundation of China(No.61701197)in part by the National Key Research and Development Program of China(No.2021YFA1000500(4))in part by the 111 Project(No.B23008).
文摘In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles,renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model,and the vehicle may also be affected by Byzantine attacks,leading to the deterioration of the vehicle data.However,based on deep reinforcement learning(DRL),we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL.At the same time,when aggregating AFL,we can focus on those vehicles with better performance to improve the accuracy and safety of the system.In this paper,we proposed a vehicle selection scheme based on DRL in VEC.In this scheme,vehicle’s mobility,channel conditions with temporal variations,computational resources with temporal variations,different data amount,transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model.
文摘The literary federation system is a cultural system with Chinese characteristics. The Chinese characteristics of the literary federation system are mainly embodied in: it is the embodiment of the United Front under the leadership of the Communist Party of China in the field of literature and art, an important system to promote the popularization of literature and art, and a supplement to the system of honors in the cultural field of new China.
基金supported in part by the National Key Research and Development Program of China under 2020AAA0106000the National Natural Science Foundation of China under U20B2060 and U21B2036supported by a grant from the Guoqiang Institute, Tsinghua University under 2021GQG1005
文摘Human mobility prediction is important for many applications.However,training an accurate mobility prediction model requires a large scale of human trajectories,where privacy issues become an important problem.The rising federated learning provides us with a promising solution to this problem,which enables mobile devices to collaboratively learn a shared prediction model while keeping all the training data on the device,decoupling the ability to do machine learning from the need to store the data in the cloud.However,existing federated learningbased methods either do not provide privacy guarantees or have vulnerability in terms of privacy leakage.In this paper,we combine the techniques of data perturbation and model perturbation mechanisms and propose a privacy-preserving mobility prediction algorithm,where we add noise to the transmitted model and the raw data collaboratively to protect user privacy and keep the mobility prediction performance.Extensive experimental results show that our proposed method significantly outperforms the existing stateof-the-art mobility prediction method in terms of defensive performance against practical attacks while having comparable mobility prediction performance,demonstrating its effectiveness.
基金supported by National Natural Science Fundation of China under Grant 61972208National Natural Science Fundation(General Program)of China under Grant 61972211+2 种基金National Key Research and Development Project of China under Grant 2020YFB1804700Future Network Innovation Research and Application Projects under Grant No.2021FNA020062021 Jiangsu Postgraduate Research Innovation Plan under Grant No.KYCX210794.
文摘With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detection accuracy,but collecting samples for centralized training brings the huge risk of data privacy leakage.Furthermore,the training of supervised deep learning models requires a large number of labeled samples,which is usually cumbersome.The“black-box”problem also makes the DL models of NIDS untrustworthy.In this paper,we propose a trusted Federated Learning(FL)Traffic IDS method called FL-TIDS to address the above-mentioned problems.In FL-TIDS,we design an unsupervised intrusion detection model based on autoencoders that alleviates the reliance on marked samples.At the same time,we use FL for model training to protect data privacy.In addition,we design an improved SHAP interpretable method based on chi-square test to perform interpretable analysis of the trained model.We conducted several experiments to evaluate the proposed FL-TIDS.We first determine experimentally the structure and the number of neurons of the unsupervised AE model.Secondly,we evaluated the proposed method using the UNSW-NB15 and CICIDS2017 datasets.The exper-imental results show that the unsupervised AE model has better performance than the other 7 intrusion detection models in terms of precision,recall and f1-score.Then,federated learning is used to train the intrusion detection model.The experimental results indicate that the model is more accurate than the local learning model.Finally,we use an improved SHAP explainability method based on Chi-square test to analyze the explainability.The analysis results show that the identification characteristics of the model are consistent with the attack characteristics,and the model is reliable.
基金supported in part by the Fundamental Research Funds for the Central Universities (2022JBQY004)the Beijing Natural Science Foundation L211013+4 种基金the Basic Research Program under Grant JCKY2022XXXX145the National Natural Science Foundation of China (No. 62221001,62201030)the Science and Technology Research and Development Plan of China Railway Co., Ltd (No. K2022G018)the project of CHN Energy Shuohuang Railway under Grant SHTL-2332the China Postdoctoral Science Foundation 2021TQ0028,2021M700369
文摘To protect vehicular privacy and speed up the execution of tasks,federated learning is introduced in the Internet of Vehicles(IoV)where users execute model training locally and upload local models to the base station without massive raw data exchange.However,heterogeneous computing and communication resources of vehicles cause straggler effect which weakens the reliability of federated learning.Dropping out vehicles with limited resources confines the training data.As a result,the accuracy and applicability of federated learning models will be reduced.To mitigate the straggler effect and improve performance of federated learning,we propose a reconfigurable intelligent surface(RIS)-assisted federated learning framework to enhance the communication reliability for parameter transmission in the IoV.Furthermore,we optimize the phase shift of RIS to achieve a more reliable communication environment.In addition,we define vehicular competence to measure both vehicular trustworthiness and resources.Based on the vehicular competence,the straggler effect is mitigated where training tasks of computing stragglers are offloaded to surrounding vehicles with high competence.The experiment results verify that our proposed framework can improve the reliability of federated learning in terms of computing and communication in the IoV.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1807700in part by the National Science Foundation of China under Grant U200120122
文摘As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dimensional stochastic gradients to edge server in training,which cause severe communication bottleneck.To address this problem,we compress the communication by sparsifying and quantizing the stochastic gradients of edge devices.We first derive a closed form of the communication compression in terms of sparsification and quantization factors.Then,the convergence rate of this communicationcompressed system is analyzed and several insights are obtained.Finally,we formulate and deal with the quantization resource allocation problem for the goal of minimizing the convergence upper bound,under the constraint of multiple-access channel capacity.Simulations show that the proposed scheme outperforms the benchmarks.
文摘In the context of edge computing environments in general and the metaverse in particular,federated learning(FL)has emerged as a distributed machine learning paradigm that allows multiple users to collaborate on training a shared machine learning model locally,eliminating the need for uploading raw data to a central server.It is perhaps the only training paradigm that preserves the privacy of user data,which is essential for computing environments as personal as the metaverse.However,the original FL architecture proposed is not scalable to a large number of user devices in the metaverse community.To mitigate this problem,hierarchical federated learning(HFL)has been introduced as a general distributed learning paradigm,inspiring a number of research works.In this paper,we present several types of HFL architectures,with a special focus on the three-layer client-edge-cloud HFL architecture,which is most pertinent to the metaverse due to its delay-sensitive nature.We also examine works that take advantage of the natural layered organization of three-layer client-edge-cloud HFL to tackle some of the most challenging problems in FL within the metaverse.Finally,we outline some future research directions of HFL in the metaverse.
基金supported in part by ZTE Industry-University-Institute Cooperation Funds under Grant No. 202211FKY00112Open Research Projects of Zhejiang Lab under Grant No. 2022QA0AB02Natural Science Foundation of Sichuan Province under Grant No. 2022NSFSC0913
文摘As an important branch of federated learning,vertical federated learning(VFL)enables multiple institutions to train on the same user samples,bringing considerable industry benefits.However,VFL needs to exchange user features among multiple institutions,which raises concerns about privacy leakage.Moreover,existing multi-party VFL privacy-preserving schemes suffer from issues such as poor reli-ability and high communication overhead.To address these issues,we propose a privacy protection scheme for four institutional VFLs,named FVFL.A hierarchical framework is first introduced to support federated training among four institutions.We also design a verifiable repli-cated secret sharing(RSS)protocol(32)-sharing and combine it with homomorphic encryption to ensure the reliability of FVFL while ensuring the privacy of features and intermediate results of the four institutions.Our theoretical analysis proves the reliability and security of the pro-posed FVFL.Extended experiments verify that the proposed scheme achieves excellent performance with a low communication overhead.