期刊文献+
共找到1,032篇文章
< 1 2 52 >
每页显示 20 50 100
Robust Transmission Design for Federated Learning Through Over-the-Air Computation
1
作者 Hamideh Zamanpour Abyaneh Saba Asaad Amir Masoud Rabiei 《China Communications》 2025年第3期65-75,共11页
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless channel.In this paper,a robust transmission sche... Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless channel.In this paper,a robust transmission scheme for an AirCompbased FL system with imperfect channel state information(CSI)is proposed.To model CSI uncertainty,an expectation-based error model is utilized.The main objective is to maximize the number of selected devices that meet mean-squared error(MSE)requirements for model broadcast and model aggregation.The problem is formulated as a combinatorial optimization problem and is solved in two steps.First,the priority order of devices is determined by a sparsity-inducing procedure.Then,a feasibility detection scheme is used to select the maximum number of devices to guarantee that the MSE requirements are met.An alternating optimization(AO)scheme is used to transform the resulting nonconvex problem into two convex subproblems.Numerical results illustrate the effectiveness and robustness of the proposed scheme. 展开更多
关键词 federated learning imperfect CSI optimization over-the-air computing robust design
在线阅读 下载PDF
EPRFL:An Efficient Privacy-Preserving and Robust Federated Learning Scheme for Fog Computing
2
作者 Ke Zhijie Xie Yong +1 位作者 Syed Hamad Shirazi Li Haifeng 《China Communications》 2025年第4期202-222,共21页
Federated learning(FL)is a distributed machine learning paradigm that excels at preserving data privacy when using data from multiple parties.When combined with Fog Computing,FL offers enhanced capabilities for machin... Federated learning(FL)is a distributed machine learning paradigm that excels at preserving data privacy when using data from multiple parties.When combined with Fog Computing,FL offers enhanced capabilities for machine learning applications in the Internet of Things(IoT).However,implementing FL across large-scale distributed fog networks presents significant challenges in maintaining privacy,preventing collusion attacks,and ensuring robust data aggregation.To address these challenges,we propose an Efficient Privacy-preserving and Robust Federated Learning(EPRFL)scheme for fog computing scenarios.Specifically,we first propose an efficient secure aggregation strategy based on the improved threshold homomorphic encryption algorithm,which is not only resistant to model inference and collusion attacks,but also robust to fog node dropping.Then,we design a dynamic gradient filtering method based on cosine similarity to further reduce the communication overhead.To minimize training delays,we develop a dynamic task scheduling strategy based on comprehensive score.Theoretical analysis demonstrates that EPRFL offers robust security and low latency.Extensive experimental results indicate that EPRFL outperforms similar strategies in terms of privacy preserving,model performance,and resource efficiency. 展开更多
关键词 federated learning fog computing internet of things PRIVACY-PRESERVING ROBUSTNESS
在线阅读 下载PDF
FedCLCC:A personalized federated learning algorithm for edge cloud collaboration based on contrastive learning and conditional computing
3
作者 Kangning Yin Xinhui Ji +1 位作者 Yan Wang Zhiguo Wang 《Defence Technology(防务技术)》 2025年第1期80-93,共14页
Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure ... Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms. 展开更多
关键词 federated learning Statistical heterogeneity Personalized model Conditional computing Contrastive learning
在线阅读 下载PDF
Anti-Byzantine Attacks Enabled Vehicle Selection for Asynchronous Federated Learning in Vehicular Edge Computing 被引量:1
4
作者 Zhang Cui Xu Xiao +4 位作者 Wu Qiong Fan Pingyi Fan Qiang Zhu Huiling Wang Jiangzhou 《China Communications》 SCIE CSCD 2024年第8期1-17,共17页
In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amount... In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles,renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model,and the vehicle may also be affected by Byzantine attacks,leading to the deterioration of the vehicle data.However,based on deep reinforcement learning(DRL),we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL.At the same time,when aggregating AFL,we can focus on those vehicles with better performance to improve the accuracy and safety of the system.In this paper,we proposed a vehicle selection scheme based on DRL in VEC.In this scheme,vehicle’s mobility,channel conditions with temporal variations,computational resources with temporal variations,different data amount,transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model. 展开更多
关键词 asynchronous federated learning byzantine attacks vehicle selection vehicular edge computing
在线阅读 下载PDF
On the Chinese Characteristics of Literary Federation System
5
作者 周逢梅 《戏剧之家》 2017年第19期203-205,共3页
The literary federation system is a cultural system with Chinese characteristics. The Chinese characteristics of the literary federation system are mainly embodied in: it is the embodiment of the United Front under th... The literary federation system is a cultural system with Chinese characteristics. The Chinese characteristics of the literary federation system are mainly embodied in: it is the embodiment of the United Front under the leadership of the Communist Party of China in the field of literature and art, an important system to promote the popularization of literature and art, and a supplement to the system of honors in the cultural field of new China. 展开更多
关键词 the literary federation SYSTEM Chinese characteristics CCP
在线阅读 下载PDF
Privacy-Preserving Federated Mobility Prediction with Compound Data and Model Perturbation Mechanism
6
作者 Long Qingyue Wang Huandong +4 位作者 Chen Huiming Jin Depeng Zhu Lin Yu Li Li Yong 《China Communications》 SCIE CSCD 2024年第3期160-173,共14页
Human mobility prediction is important for many applications.However,training an accurate mobility prediction model requires a large scale of human trajectories,where privacy issues become an important problem.The ris... Human mobility prediction is important for many applications.However,training an accurate mobility prediction model requires a large scale of human trajectories,where privacy issues become an important problem.The rising federated learning provides us with a promising solution to this problem,which enables mobile devices to collaboratively learn a shared prediction model while keeping all the training data on the device,decoupling the ability to do machine learning from the need to store the data in the cloud.However,existing federated learningbased methods either do not provide privacy guarantees or have vulnerability in terms of privacy leakage.In this paper,we combine the techniques of data perturbation and model perturbation mechanisms and propose a privacy-preserving mobility prediction algorithm,where we add noise to the transmitted model and the raw data collaboratively to protect user privacy and keep the mobility prediction performance.Extensive experimental results show that our proposed method significantly outperforms the existing stateof-the-art mobility prediction method in terms of defensive performance against practical attacks while having comparable mobility prediction performance,demonstrating its effectiveness. 展开更多
关键词 federated learning mobility prediction PRIVACY
在线阅读 下载PDF
Trusted Encrypted Traffic Intrusion Detection Method Based on Federated Learning and Autoencoder
7
作者 Wang Zixuan Miao Cheng +3 位作者 Xu Yuhua Li Zeyi Sun Zhixin Wang Pan 《China Communications》 SCIE CSCD 2024年第8期211-235,共25页
With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detecti... With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detection accuracy,but collecting samples for centralized training brings the huge risk of data privacy leakage.Furthermore,the training of supervised deep learning models requires a large number of labeled samples,which is usually cumbersome.The“black-box”problem also makes the DL models of NIDS untrustworthy.In this paper,we propose a trusted Federated Learning(FL)Traffic IDS method called FL-TIDS to address the above-mentioned problems.In FL-TIDS,we design an unsupervised intrusion detection model based on autoencoders that alleviates the reliance on marked samples.At the same time,we use FL for model training to protect data privacy.In addition,we design an improved SHAP interpretable method based on chi-square test to perform interpretable analysis of the trained model.We conducted several experiments to evaluate the proposed FL-TIDS.We first determine experimentally the structure and the number of neurons of the unsupervised AE model.Secondly,we evaluated the proposed method using the UNSW-NB15 and CICIDS2017 datasets.The exper-imental results show that the unsupervised AE model has better performance than the other 7 intrusion detection models in terms of precision,recall and f1-score.Then,federated learning is used to train the intrusion detection model.The experimental results indicate that the model is more accurate than the local learning model.Finally,we use an improved SHAP explainability method based on Chi-square test to analyze the explainability.The analysis results show that the identification characteristics of the model are consistent with the attack characteristics,and the model is reliable. 展开更多
关键词 autoencoder federated learning intrusion detection model interpretation unsupervised learning
在线阅读 下载PDF
Mitigating Straggler Effect in Federated Learning Based on Reconfigurable Intelligent Surface over Internet of Vehicles
8
作者 Li Zejun Wu Hao +2 位作者 Lu Yunlong Dai Yueyue Ai Bo 《China Communications》 SCIE CSCD 2024年第8期62-78,共17页
To protect vehicular privacy and speed up the execution of tasks,federated learning is introduced in the Internet of Vehicles(IoV)where users execute model training locally and upload local models to the base station ... To protect vehicular privacy and speed up the execution of tasks,federated learning is introduced in the Internet of Vehicles(IoV)where users execute model training locally and upload local models to the base station without massive raw data exchange.However,heterogeneous computing and communication resources of vehicles cause straggler effect which weakens the reliability of federated learning.Dropping out vehicles with limited resources confines the training data.As a result,the accuracy and applicability of federated learning models will be reduced.To mitigate the straggler effect and improve performance of federated learning,we propose a reconfigurable intelligent surface(RIS)-assisted federated learning framework to enhance the communication reliability for parameter transmission in the IoV.Furthermore,we optimize the phase shift of RIS to achieve a more reliable communication environment.In addition,we define vehicular competence to measure both vehicular trustworthiness and resources.Based on the vehicular competence,the straggler effect is mitigated where training tasks of computing stragglers are offloaded to surrounding vehicles with high competence.The experiment results verify that our proposed framework can improve the reliability of federated learning in terms of computing and communication in the IoV. 展开更多
关键词 reliable federated learning RIS straggler effect vehicular competence
在线阅读 下载PDF
Stochastic Gradient Compression for Federated Learning over Wireless Network
9
作者 Lin Xiaohan Liu Yuan +2 位作者 Chen Fangjiong Huang Yang Ge Xiaohu 《China Communications》 SCIE CSCD 2024年第4期230-247,共18页
As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dim... As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dimensional stochastic gradients to edge server in training,which cause severe communication bottleneck.To address this problem,we compress the communication by sparsifying and quantizing the stochastic gradients of edge devices.We first derive a closed form of the communication compression in terms of sparsification and quantization factors.Then,the convergence rate of this communicationcompressed system is analyzed and several insights are obtained.Finally,we formulate and deal with the quantization resource allocation problem for the goal of minimizing the convergence upper bound,under the constraint of multiple-access channel capacity.Simulations show that the proposed scheme outperforms the benchmarks. 展开更多
关键词 federated learning gradient compression quantization resource allocation stochastic gradient descent(SGD)
在线阅读 下载PDF
Hierarchical Federated Learning Architectures for the Metaverse
10
作者 GU Cheng LI Baochun 《ZTE Communications》 2024年第2期39-48,共10页
In the context of edge computing environments in general and the metaverse in particular,federated learning(FL)has emerged as a distributed machine learning paradigm that allows multiple users to collaborate on traini... In the context of edge computing environments in general and the metaverse in particular,federated learning(FL)has emerged as a distributed machine learning paradigm that allows multiple users to collaborate on training a shared machine learning model locally,eliminating the need for uploading raw data to a central server.It is perhaps the only training paradigm that preserves the privacy of user data,which is essential for computing environments as personal as the metaverse.However,the original FL architecture proposed is not scalable to a large number of user devices in the metaverse community.To mitigate this problem,hierarchical federated learning(HFL)has been introduced as a general distributed learning paradigm,inspiring a number of research works.In this paper,we present several types of HFL architectures,with a special focus on the three-layer client-edge-cloud HFL architecture,which is most pertinent to the metaverse due to its delay-sensitive nature.We also examine works that take advantage of the natural layered organization of three-layer client-edge-cloud HFL to tackle some of the most challenging problems in FL within the metaverse.Finally,we outline some future research directions of HFL in the metaverse. 展开更多
关键词 federated learning hierarchical federated learning metaverse
在线阅读 下载PDF
A Privacy-Preserving Scheme for Multi-Party Vertical Federated Learning
11
作者 FAN Mochan ZHANG Zhipeng +2 位作者 LI Difei ZHANG Qiming YAO Haidong 《ZTE Communications》 2024年第4期89-96,共8页
As an important branch of federated learning,vertical federated learning(VFL)enables multiple institutions to train on the same user samples,bringing considerable industry benefits.However,VFL needs to exchange user f... As an important branch of federated learning,vertical federated learning(VFL)enables multiple institutions to train on the same user samples,bringing considerable industry benefits.However,VFL needs to exchange user features among multiple institutions,which raises concerns about privacy leakage.Moreover,existing multi-party VFL privacy-preserving schemes suffer from issues such as poor reli-ability and high communication overhead.To address these issues,we propose a privacy protection scheme for four institutional VFLs,named FVFL.A hierarchical framework is first introduced to support federated training among four institutions.We also design a verifiable repli-cated secret sharing(RSS)protocol(32)-sharing and combine it with homomorphic encryption to ensure the reliability of FVFL while ensuring the privacy of features and intermediate results of the four institutions.Our theoretical analysis proves the reliability and security of the pro-posed FVFL.Extended experiments verify that the proposed scheme achieves excellent performance with a low communication overhead. 展开更多
关键词 vertical federated learning privacy protection replicated secret sharing
在线阅读 下载PDF
当代俄罗斯的语言立法与语言关系发展
12
作者 何俊芳 郭亚星 《语言战略研究》 北大核心 2025年第1期54-61,共8页
语言立法是对语言的地位、权利、使用、发展、保存和保护等进行调节的法律行为,是国家语言政策和语言规划在法律形式上的集中体现。俄罗斯的语言立法具有一定的典型性,相对较为完整和系统,既有国家层面的《俄罗斯联邦宪法》和《俄罗斯... 语言立法是对语言的地位、权利、使用、发展、保存和保护等进行调节的法律行为,是国家语言政策和语言规划在法律形式上的集中体现。俄罗斯的语言立法具有一定的典型性,相对较为完整和系统,既有国家层面的《俄罗斯联邦宪法》和《俄罗斯联邦国语法》《俄罗斯联邦民族文化自治法》等专项立法;也有地方层面各共和国的相关立法。长期以来,俄罗斯的语言关系中存在着一些较为突出的问题,如对各共和国国语的学习应遵循义务性还是自愿性原则规定不明确,联邦官方将“母语”等同于民族语言为某些共和国提供了法律操作的借口,等等,这些问题导致某些地区出现语言争端。从俄罗斯的语言立法和语言关系发展情况看,在多民族国家的语言建设中,应通过法治化建设为国家通用语的推行提供法律依据和保障,并在实行双(多)官方语言的自治地方坚持国家通用语的主导地位和应有的语言秩序。 展开更多
关键词 语言立法 语言关系 俄罗斯
在线阅读 下载PDF
二次聚合个性化联邦的不同工况下滚动轴承寿命预测方法
13
作者 康守强 杨得济 +2 位作者 王玉静 王庆岩 谢金宝 《振动与冲击》 北大核心 2025年第2期254-266,共13页
针对不同工况下滚动轴承振动数据分布差异大,单一用户数据量少且多个用户间数据不共享的问题,提出一种二次聚合个性化联邦的滚动轴承寿命预测方法。该方法用不同深度的自编码器提取多尺度特征信息并压缩为散点图,实现特征增强;利用无监... 针对不同工况下滚动轴承振动数据分布差异大,单一用户数据量少且多个用户间数据不共享的问题,提出一种二次聚合个性化联邦的滚动轴承寿命预测方法。该方法用不同深度的自编码器提取多尺度特征信息并压缩为散点图,实现特征增强;利用无监督二元回归模型确定第一预测时间,构建分段退化标签;提出二次聚合个性化联邦学习算法,各用户构建改进的卷积神经网络-长短时记忆网络模型,并将其参数上传至服务端,服务端采用多任务学习框架,一次聚合多用户同种工况模型参数;在此基础上,利用批量归一化层参数统计信息计算一次聚合模型间相似度,引入权重更新机制指导模型参数二次聚合,减少不同工况模型间的负迁移现象并学习有益的全局知识,最终形成针对各工况的个性化预测模型。经试验验证,所提方法在保障数据隐私的前提下,可实现不同工况下滚动轴承寿命预测,并且预测的平均得分与不考虑数据隐私的集中式学习方法相当、相较于联邦平均算法平均得分提高0.2197。 展开更多
关键词 滚动轴承 多尺度特征提取 联邦学习 个性化 剩余寿命预测
在线阅读 下载PDF
自适应聚类中心个数选择:一种联邦学习的隐私效用平衡方法
14
作者 宁博 宁一鸣 +3 位作者 杨超 周新 李冠宇 马茜 《电子与信息学报》 北大核心 2025年第2期519-529,共11页
联邦学习是一种分布式机器学习方法,它使多个设备或节点能够协作训练模型,同时保持数据的本地性。但由于联邦学习是由不同方拥有的数据集进行模型训练,敏感数据可能会被泄露。为了改善上述问题,已有相关工作在联邦学习中应用差分隐私对... 联邦学习是一种分布式机器学习方法,它使多个设备或节点能够协作训练模型,同时保持数据的本地性。但由于联邦学习是由不同方拥有的数据集进行模型训练,敏感数据可能会被泄露。为了改善上述问题,已有相关工作在联邦学习中应用差分隐私对梯度数据添加噪声。然而在采用了相应的隐私技术来降低敏感数据泄露风险的同时,模型精度和效果因为噪声大小的不同也受到了部分影响。为解决此问题,该文提出一种自适应聚类中心个数选择机制(DP-Fed-Adap),根据训练轮次和梯度的变化动态地改变聚类中心个数,使模型可以在保持相同性能水平的同时确保对敏感数据的保护。实验表明,在使用相同的隐私预算前提下DP-Fed-Adap与添加了差分隐私的联邦相似算法(FedSim)和联邦平均算法(FedAvg)相比,具有更好的模型性能和隐私保护效果。 展开更多
关键词 联邦学习 差分隐私保护 梯度聚类 自适应选择
在线阅读 下载PDF
一种自适应的网格化联邦学习客户端调度算法
15
作者 吴家皋 蒋宇栋 刘林峰 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期79-89,共11页
针对联邦学习(Federated Learning,FL)系统异构性而导致的训练性能下降问题,提出了一种自适应的网格化联邦学习客户端调度算法。首先,全面考虑FL的异构性特点,将3种异构性分别定义为3个独立的维度,包括训练速度、数据量和数据分布维度,... 针对联邦学习(Federated Learning,FL)系统异构性而导致的训练性能下降问题,提出了一种自适应的网格化联邦学习客户端调度算法。首先,全面考虑FL的异构性特点,将3种异构性分别定义为3个独立的维度,包括训练速度、数据量和数据分布维度,提出了一种新的FL客户端三维网格模型,并将所有客户端分配到该模型中相应的单元格内,以对其进行分类管理。在此基础上,为了克服传统启发式算法的不足,提出了一种基于多臂老虎机的网格化客户端调度算法,该算法能自适应地选择模型精度较低的单元格中的客户端子集参与每轮的FL训练,以改善客户端选择的公平性。仿真实验表明,与几种相关的最新FL算法相比,所提出的算法能显著提高模型精度,同时减少训练时间,从而验证了其有效性。 展开更多
关键词 联邦学习 异构性 三维网格 客户端选择 多臂老虎机
在线阅读 下载PDF
国家公园天窗管理的路径与实践:中美对比与启示
16
作者 马允 何思源 《风景园林》 北大核心 2025年第2期20-27,共8页
【目的】在建立以国家公园为主体的自然保护地体系的背景下,探索调出地块(“开天窗”)这一空间规划思路的制度动因、潜在问题和优化路径。【方法】通过政策文本、历史文献,利用比较分析法,溯源中美两国天窗概念的演变,归纳总结二者天窗... 【目的】在建立以国家公园为主体的自然保护地体系的背景下,探索调出地块(“开天窗”)这一空间规划思路的制度动因、潜在问题和优化路径。【方法】通过政策文本、历史文献,利用比较分析法,溯源中美两国天窗概念的演变,归纳总结二者天窗管理体制和路径的异同并提出对策建议。【结果】由于自然资源管理体制和所有权结构存在差异,中美两国形成了基于土地功能的“开天窗”规划和基于所有权整合的“关天窗”管理的迥异路径,面临多元权益协调和冲突化解的共通难题。【结论】是否“开天窗”以及如何管理天窗社区是影响国家公园保护成效和实现区域发展协同的关键因素。中国国家公园规划应反思并追问“开天窗”的正当性,建立人为活动正当性评价体系,通过分类管控和规划对接,实现从“调”到“管”的转变;可借鉴国外天窗管理的制度工具,通过多种工具的选取与组合使用提升保护质效。 展开更多
关键词 国家公园 天窗 国土空间规划 联邦土地 规制
在线阅读 下载PDF
广西产业结构转型与经济增长分析——基于扩展的Feder模型的实证 被引量:5
17
作者 刘志雄 蒙菊花 《资源与产业》 2014年第5期115-121,共7页
基于扩展的Feder模型,对广西产业结构转型与经济增长进行实证研究。研究发现:1)工业部门的要素边际生产率高于农业部门和服务业部门,这证明了加快推进工业化进程的必要性,符合广西构建现代产业体系的要求;2)服务业部门对农业部门和工业... 基于扩展的Feder模型,对广西产业结构转型与经济增长进行实证研究。研究发现:1)工业部门的要素边际生产率高于农业部门和服务业部门,这证明了加快推进工业化进程的必要性,符合广西构建现代产业体系的要求;2)服务业部门对农业部门和工业部门,以及农业部门对工业部门都有正效应,产业结构转型能够为广西经济增长带来强大的推动力。广西产业结构不够合理,需要制定相应措施,如积极推动现代农业发展,进一步培育和打造现代产业体系,加快发展现代服务业,并通过加快科技水平的提升,以技术进步促进广西经济增长。 展开更多
关键词 产业结构转型 经济增长 扩展的feder模型 广西
在线阅读 下载PDF
基于零集中差分隐私的联邦学习激励方案
18
作者 李梦倩 田有亮 +1 位作者 张军鹏 赵冬梅 《通信学报》 北大核心 2025年第1期79-92,共14页
针对联邦学习场景下客户端选择不公平及模型训练低效问题,提出了一种基于激励机制的隐私保护联邦学习框架(zCDP-FL)。该框架将第二价反向拍卖应用到客户端的选择策略,设计了激励机制算法(SRAI),最大化系统效益。此外,采用零集中差分隐私... 针对联邦学习场景下客户端选择不公平及模型训练低效问题,提出了一种基于激励机制的隐私保护联邦学习框架(zCDP-FL)。该框架将第二价反向拍卖应用到客户端的选择策略,设计了激励机制算法(SRAI),最大化系统效益。此外,采用零集中差分隐私,提出了隐私预算动态分配算法,实现训练过程中噪声规模的动态调整,在严格隐私计算边界的情况下提供更强的隐私保护。理论分析与仿真实验证明,zCDP-FL能够有效防止隐私泄露,并提升了2.13%~3.62%模型训练效率。 展开更多
关键词 联邦学习 零集中差分隐私 激励机制 隐私预算 动态分配
在线阅读 下载PDF
基于多方计算的安全拜占庭弹性联邦学习
19
作者 高鸿峰 黄浩 田有亮 《通信学报》 北大核心 2025年第2期108-122,共15页
为了解决联邦学习中梯度隐私保护、服务器推理攻击和客户端数据投毒导致的低准确率等问题,针对服务器-客户端的两层架构,提出了一种基于多方计算的安全拜占庭弹性联邦学习方案。首先,提出了一种基于加法秘密共享的两方密文计算方法,对... 为了解决联邦学习中梯度隐私保护、服务器推理攻击和客户端数据投毒导致的低准确率等问题,针对服务器-客户端的两层架构,提出了一种基于多方计算的安全拜占庭弹性联邦学习方案。首先,提出了一种基于加法秘密共享的两方密文计算方法,对本地模型梯度进行拆分,来抵抗服务器的推理攻击。其次,设计了一种密态数据下的投毒检测算法和客户端筛选机制来抵御投毒攻击。最后,在MNIST数据集和CIFAR-10数据集上进行实验来验证方案的可行性。与传统的Trim-mean和Median方法相比,当拜占庭参与者比例达到40%时,模型的准确率提升了3%~6%。综上所述,所提方案既能抵御推理攻击和投毒攻击,又能提高全局模型的准确率,足以证明方案的有效性。 展开更多
关键词 联邦学习 隐私保护 多方计算 推理攻击 投毒攻击
在线阅读 下载PDF
边缘辅助的自适应稀疏联邦学习优化算法
20
作者 陈晓 仇洪冰 李燕龙 《电子与信息学报》 北大核心 2025年第3期645-656,共12页
联邦学习中,高模型贡献率的无线网络设备通常由于算力不足、能量有限成为掉队者,进而增加模型聚合时延并影响全局模型精度。针对此问题,该文设计了联合边缘服务器辅助训练和模型自适应稀疏联邦学习架构,并提出了基于边缘辅助训练的自适... 联邦学习中,高模型贡献率的无线网络设备通常由于算力不足、能量有限成为掉队者,进而增加模型聚合时延并影响全局模型精度。针对此问题,该文设计了联合边缘服务器辅助训练和模型自适应稀疏联邦学习架构,并提出了基于边缘辅助训练的自适应稀疏联邦学习优化算法。首先,引入边缘服务器为算力不足或能量受限的设备提供辅助训练。构建了辅助训练和通信、计算资源分配的优化模型,并采用多种深度强化学习方法求解优化的辅助训练决策。其次,基于辅助训练决策,在每个通信轮次自适应地对全局模型进行非结构化剪枝,进一步降低设备的时延和能耗开销。实验结果表明,所提算法极大地减少了掉队设备,其模型测试精度优于经典联邦学习的测试精度;利用深度确定性策略梯度(DDPG)优化辅助资源分配的算法有效地减少了系统训练时延,提升了模型训练效率。 展开更多
关键词 联邦学习 边缘服务器 自适应稀疏 深度强化学习 非结构化剪枝
在线阅读 下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部