针对滚动轴承原始振动信号重要特征信息被较强背景噪声淹没以及提取的时域特征冗余度较高、相关性较强的缺点,提出一种基于最大相关-最小冗余(max-relevance and min-redundancy,mRMR)特征筛选和随机森林的滚动轴承故障诊断研究方法。...针对滚动轴承原始振动信号重要特征信息被较强背景噪声淹没以及提取的时域特征冗余度较高、相关性较强的缺点,提出一种基于最大相关-最小冗余(max-relevance and min-redundancy,mRMR)特征筛选和随机森林的滚动轴承故障诊断研究方法。首先将原始信号进行自适应噪声完整集成经验模态分解(CEEMDAN)得到一系列固有模态分量(IMFs),分析IMF并去掉高频噪声和一部分虚假分量,再将信号进行重构并提取其时域特征,通过mRMR去除冗余性和相关性较高的特征向量,使筛选出的特征子集与标签有最大的依赖性,最后将该特征子集输入到随机森林分类器进行分类。实验表明,mRMR具有优良的特征搜索策略,重要特征均靠前得到选取,仅需3个特征便能达到较高的分类准确率,效率高于其余特征选择算法。展开更多
提出一种基于改进最大相关最小冗余判据(maximal relevance and minimal redundancy,mRMR)的暂态稳定评估特征选择方法。首先对标准mRMR方法进行改进,在最大相关、最小冗余判据中引入一个权重因子以细化对特征相关性和冗余性的度量。然...提出一种基于改进最大相关最小冗余判据(maximal relevance and minimal redundancy,mRMR)的暂态稳定评估特征选择方法。首先对标准mRMR方法进行改进,在最大相关、最小冗余判据中引入一个权重因子以细化对特征相关性和冗余性的度量。然后,考虑相量测量单元可以提供的故障后实测信息,构造由系统特征构成的原始特征集,将改进的mRMR应用于特征选择。通过增量搜索算法得到一组嵌套的候选特征子集,并使用支持向量机分类器验证各候选特征子集的分类性能,选择得到具有最大分类正确率的特征子集。基于新英格兰39节点系统和IEEE 50机测试系统的算例结果验证了所提特征选择方法的有效性。展开更多
文摘由于具有高时间分辨率、无创性,脑电(Electroencephalogram,EEG)信号被广泛应用于航空航天任务操作员的疲劳、脑力负荷分析等。针对EEG信号多通道且各通道内信息不完全相同的特性,提出了一种基于最小冗余最大相关性(Minimum redundancy maximum relevance,mRMR)算法的EEG特征评价技术。通过设置目标变量,计算各通道内EEG特征与目标变量的互信息量、特征在通道内部的冗余度,可对EEG特征的性能做出评价。进一步,获取管制员在不同脑力负荷下的EEG数据,对一系列EEG特征做出评价并与已有研究、特征在不同分类方式下的可分性进行对比,验证了该特征评价技术的有效性。与现有的技术相比,该技术避免了灰色关联分析法确定权重参数和灰色关联度的主观性、避免了分类器评价法的差异性。相较于已有的特征选择算法,考虑了通道内部信息的冗余,使得评价结果更为准确。相较于基于统计学的相关技术,该方法可对特征的性能做出定量的评价,以便对不同指标进行比较。最后,阐述了该评价方式疲劳程度分析、情绪识别等方面的应用。
文摘针对滚动轴承原始振动信号重要特征信息被较强背景噪声淹没以及提取的时域特征冗余度较高、相关性较强的缺点,提出一种基于最大相关-最小冗余(max-relevance and min-redundancy,mRMR)特征筛选和随机森林的滚动轴承故障诊断研究方法。首先将原始信号进行自适应噪声完整集成经验模态分解(CEEMDAN)得到一系列固有模态分量(IMFs),分析IMF并去掉高频噪声和一部分虚假分量,再将信号进行重构并提取其时域特征,通过mRMR去除冗余性和相关性较高的特征向量,使筛选出的特征子集与标签有最大的依赖性,最后将该特征子集输入到随机森林分类器进行分类。实验表明,mRMR具有优良的特征搜索策略,重要特征均靠前得到选取,仅需3个特征便能达到较高的分类准确率,效率高于其余特征选择算法。