A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault inje...A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault injection model to trigger security exceptions.The testing process could be recorded by the monitoring mechanism of the strategy,and the monitoring information was written into the security log.The component vulnerabilities could be detected by the detecting algorithm through analyzing the security log.Lastly,some experiments were done in an integration testing platform to verify the applicability of the strategy.The experimental results show that the strategy is effective and operable.The detecting rate is more than 90%for vulnerability components.展开更多
A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and ...A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and safety and reliability analyses are increasingly required for these systems.SEFTs combine elements from the traditional fault tree with elements from state-based techniques.In the context of the real-time safety-critical systems,SEFTs do not describe the time properties and important timedependent system behaviors that can lead to system failures.Further,SEFTs lack the precise semantics required for formally modeling time behaviors.In this paper,we present a qualitative analysis method for SEFTs based on transformation from SEFT to timed automata(TA),and use the model checker UPPAAL to verify system requirements’properties.The combination of SEFT and TA is an important step towards an integrated design and verification process for real-time safety-critical systems.Finally,we present a case study of a powerboat autopilot system to confirm our method is viable and valid after achieving the verification goal step by step.展开更多
Computational complexity of complex system multiple fault diagnosis is a puzzle at all times. Based on the well known Mozetic's approach, a novel hierarchical model-based diagnosis methodology is put forward for impr...Computational complexity of complex system multiple fault diagnosis is a puzzle at all times. Based on the well known Mozetic's approach, a novel hierarchical model-based diagnosis methodology is put forward for improving efficency of multi-fault recognition and localization. Structural abstraction and weighted fault propagation graphs are combined to build diagnosis model. The graphs have weighted arcs with fault propagation probabilities and propagation strength. For solving the problem of coupled faults, two diagnosis strategies are used: one is the Lagrangian relaxation and the primal heuristic algorithms; another is the method of propagation strength. Finally, an applied example shows the applicability of the approach and experimental results are given to show the superiority of the presented technique.展开更多
In this paper we propose an equation model of system-level fault diagnoses, and construct corresponding theory and algorithms. People can turn any PMC model on ex-test into an equivalent equation (or a system of equat...In this paper we propose an equation model of system-level fault diagnoses, and construct corresponding theory and algorithms. People can turn any PMC model on ex-test into an equivalent equation (or a system of equations), and find all consistent fault patterns based on the equation model. We can also find all fault patterns, in which the fault node numbers are less than or equal to t without supposing t-diagnosable. It is not impossible for all graphic models.展开更多
Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground ...Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates. There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.展开更多
A novel robust fault diagnosis scheme, which possesses fault estimate capability as well as fault diagnosis property, is proposed. The scheme is developed based on a suitable combination of the adaptive multiple model...A novel robust fault diagnosis scheme, which possesses fault estimate capability as well as fault diagnosis property, is proposed. The scheme is developed based on a suitable combination of the adaptive multiple model (AMM) and unknown input observer (UIO). The main idea of the proposed scheme stems from the fact that the actuator Lock-in-Place fault is unknown (when and where the actuator gets locked are unknown), and multiple models are used to describe different fault scenarios, then a bank of unknown input observers are designed to implement the disturbance de-coupling. According to Lyapunov theory, proof of the robustness of the newly developed scheme in the presence of faults and disturbances is derived. Numerical simulation results on an aircraft example show satisfactory performance of the proposed algorithm.展开更多
The shafting vibration is closely related to the rotational angular speed.The angular speed of hydro turbine generating sets(HTGS)is rapidly change in fault transient,it maybe reduce the shafting damage.By means of en...The shafting vibration is closely related to the rotational angular speed.The angular speed of hydro turbine generating sets(HTGS)is rapidly change in fault transient,it maybe reduce the shafting damage.By means of energy analysis,the differential equation of shafting vibration for the HTGS is derived,in which include the equation of generator rotor and hydro turbine runner,it can be applied to transient analysis.Shafting model is transformed into first order differential equation groups,and is combined with the motion equation of HTGS to build integrated model.Various additional forces of shafting are taken as input inspire in proposed model,the generality of model is good.At last,the shafting vibration in emergency stop transient is simulated.展开更多
The open-circuit fault of the power switches in shunt active power filter(SAPF) would exacerbate the harmonic pollution of power grid, and degrade the reliability of the devices and system. A fault diagnosis method is...The open-circuit fault of the power switches in shunt active power filter(SAPF) would exacerbate the harmonic pollution of power grid, and degrade the reliability of the devices and system. A fault diagnosis method is proposed based on reference model and an over-modulation strategy under hardware fault tolerance for SAPF. First, a mathematic model is established for SAPF. Second, the residuals are generated by comparing the outputs of reference model and those of actual model, and open-switch fault is detected and diagnosed by residual evaluation. After that, hardware fault tolerance is performed with the three-phase four-switch(TPFS) topology to isolate the faulty phase. Finally, the over-modulation strategy is proposed to increase the voltage transfer ratio of the TPFS topology. Simulation and experimental results verified the feasibility and effectiveness of the proposed method.展开更多
In this paper, we shall summarize a new approach to robust and fault tolerant control proposed recently by the author. This approach is based on a variation of all controller parametrization. This robust and fault-tol...In this paper, we shall summarize a new approach to robust and fault tolerant control proposed recently by the author. This approach is based on a variation of all controller parametrization. This robust and fault-tolerant control design consists of two parts: a nominal performance controller and a robustness controller, and works in such a way that when a component (sensor,actuator, etc.) failure is detected, the controller structure is reconfigured by adding a robustness loop to compensate the fault. We shall illustrate how this strategy works under various situations.展开更多
Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont...Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.展开更多
开发有效的风机电磁暂态模型是进行海上风电并网研究的基础。根据不同生产厂家所提供的直驱风机模型,提出了一种基于厂家黑盒模型的直驱风机电磁暂态建模方法。利用厂家所提供的模型测试数据解析风机的故障响应特性,推导了不同厂家在电...开发有效的风机电磁暂态模型是进行海上风电并网研究的基础。根据不同生产厂家所提供的直驱风机模型,提出了一种基于厂家黑盒模型的直驱风机电磁暂态建模方法。利用厂家所提供的模型测试数据解析风机的故障响应特性,推导了不同厂家在电压故障下有功和无功功率响应表达式,包括故障期间的穿越控制过程及不同过程间的暂态切换策略。提出了加权平均压降的风电场等值方法,采用自主研发的全电磁暂态仿真软件(power system model,PSModel)对我国广东某海上风电场进行全电磁暂态建模。根据稳态潮流及暂态特性结果验证了模型可通过系统测试,且有效实现了海上风电场的全电磁暂态建模,从而为该风场接入大电网后的安全稳定分析提供了研究基础。展开更多
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d...For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.展开更多
基金Project(513150601)supported by the National Pre-Research Project Foundation of China
文摘A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault injection model to trigger security exceptions.The testing process could be recorded by the monitoring mechanism of the strategy,and the monitoring information was written into the security log.The component vulnerabilities could be detected by the detecting algorithm through analyzing the security log.Lastly,some experiments were done in an integration testing platform to verify the applicability of the strategy.The experimental results show that the strategy is effective and operable.The detecting rate is more than 90%for vulnerability components.
基金supported by the National Natural Science Foundation of China(11832012)
文摘A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and safety and reliability analyses are increasingly required for these systems.SEFTs combine elements from the traditional fault tree with elements from state-based techniques.In the context of the real-time safety-critical systems,SEFTs do not describe the time properties and important timedependent system behaviors that can lead to system failures.Further,SEFTs lack the precise semantics required for formally modeling time behaviors.In this paper,we present a qualitative analysis method for SEFTs based on transformation from SEFT to timed automata(TA),and use the model checker UPPAAL to verify system requirements’properties.The combination of SEFT and TA is an important step towards an integrated design and verification process for real-time safety-critical systems.Finally,we present a case study of a powerboat autopilot system to confirm our method is viable and valid after achieving the verification goal step by step.
文摘Computational complexity of complex system multiple fault diagnosis is a puzzle at all times. Based on the well known Mozetic's approach, a novel hierarchical model-based diagnosis methodology is put forward for improving efficency of multi-fault recognition and localization. Structural abstraction and weighted fault propagation graphs are combined to build diagnosis model. The graphs have weighted arcs with fault propagation probabilities and propagation strength. For solving the problem of coupled faults, two diagnosis strategies are used: one is the Lagrangian relaxation and the primal heuristic algorithms; another is the method of propagation strength. Finally, an applied example shows the applicability of the approach and experimental results are given to show the superiority of the presented technique.
基金Project supported by the National Natural Science Foundation of China! (No.69973016).
文摘In this paper we propose an equation model of system-level fault diagnoses, and construct corresponding theory and algorithms. People can turn any PMC model on ex-test into an equivalent equation (or a system of equations), and find all consistent fault patterns based on the equation model. We can also find all fault patterns, in which the fault node numbers are less than or equal to t without supposing t-diagnosable. It is not impossible for all graphic models.
基金National Natural Science Foundation of China (59895410) Commonweal Foundation of the Ministry of Science and Technology of China (2001DIB20098).
文摘Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates. There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.
基金the National Natural Science Foundation of China (60574083)Aeronautics Science Foun-dation of China (2007ZC52039)
文摘A novel robust fault diagnosis scheme, which possesses fault estimate capability as well as fault diagnosis property, is proposed. The scheme is developed based on a suitable combination of the adaptive multiple model (AMM) and unknown input observer (UIO). The main idea of the proposed scheme stems from the fact that the actuator Lock-in-Place fault is unknown (when and where the actuator gets locked are unknown), and multiple models are used to describe different fault scenarios, then a bank of unknown input observers are designed to implement the disturbance de-coupling. According to Lyapunov theory, proof of the robustness of the newly developed scheme in the presence of faults and disturbances is derived. Numerical simulation results on an aircraft example show satisfactory performance of the proposed algorithm.
基金financially supported by the National Natural Science Foundation of China under Grant No.51179079
文摘The shafting vibration is closely related to the rotational angular speed.The angular speed of hydro turbine generating sets(HTGS)is rapidly change in fault transient,it maybe reduce the shafting damage.By means of energy analysis,the differential equation of shafting vibration for the HTGS is derived,in which include the equation of generator rotor and hydro turbine runner,it can be applied to transient analysis.Shafting model is transformed into first order differential equation groups,and is combined with the motion equation of HTGS to build integrated model.Various additional forces of shafting are taken as input inspire in proposed model,the generality of model is good.At last,the shafting vibration in emergency stop transient is simulated.
基金Project(2012AA051601)supported by the High-Tech Research and Development Program of China
文摘The open-circuit fault of the power switches in shunt active power filter(SAPF) would exacerbate the harmonic pollution of power grid, and degrade the reliability of the devices and system. A fault diagnosis method is proposed based on reference model and an over-modulation strategy under hardware fault tolerance for SAPF. First, a mathematic model is established for SAPF. Second, the residuals are generated by comparing the outputs of reference model and those of actual model, and open-switch fault is detected and diagnosed by residual evaluation. After that, hardware fault tolerance is performed with the three-phase four-switch(TPFS) topology to isolate the faulty phase. Finally, the over-modulation strategy is proposed to increase the voltage transfer ratio of the TPFS topology. Simulation and experimental results verified the feasibility and effectiveness of the proposed method.
基金Supported in part by grants from NASA and the Louisiana Board of Regents
文摘In this paper, we shall summarize a new approach to robust and fault tolerant control proposed recently by the author. This approach is based on a variation of all controller parametrization. This robust and fault-tolerant control design consists of two parts: a nominal performance controller and a robustness controller, and works in such a way that when a component (sensor,actuator, etc.) failure is detected, the controller structure is reconfigured by adding a robustness loop to compensate the fault. We shall illustrate how this strategy works under various situations.
文摘Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.
文摘开发有效的风机电磁暂态模型是进行海上风电并网研究的基础。根据不同生产厂家所提供的直驱风机模型,提出了一种基于厂家黑盒模型的直驱风机电磁暂态建模方法。利用厂家所提供的模型测试数据解析风机的故障响应特性,推导了不同厂家在电压故障下有功和无功功率响应表达式,包括故障期间的穿越控制过程及不同过程间的暂态切换策略。提出了加权平均压降的风电场等值方法,采用自主研发的全电磁暂态仿真软件(power system model,PSModel)对我国广东某海上风电场进行全电磁暂态建模。根据稳态潮流及暂态特性结果验证了模型可通过系统测试,且有效实现了海上风电场的全电磁暂态建模,从而为该风场接入大电网后的安全稳定分析提供了研究基础。
基金supported by the National Natural Science Foundation of China(61202473)the Fundamental Research Funds for Central Universities(JUSRP111A49)+1 种基金"111 Project"(B12018)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.