期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
Fault Diagnosis for Buckling Friction Components in Wet Multi-Disc Clutches Using IHHT
1
作者 Yuqing Feng Changsong Zheng +2 位作者 Liang Yu Chengsi Wei Xiangjun Ouyang 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期326-336,共11页
The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform met... The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods. 展开更多
关键词 multi-disc clutch BUCKLING fault diagnosis Hilbert-Huang transform ENTROPY
在线阅读 下载PDF
Bearing fault diagnosis based on a multiple-constraint modal-invariant graph convolutional fusion network
2
作者 Zhongmei Wang Pengxuan Nie +3 位作者 Jianhua Liu Jing He Haibo Wu Pengfei Guo 《High-Speed Railway》 2024年第2期92-100,共9页
Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between... Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between different modal data in most existing multisensor data fusion methods for bearing fault diagnosis,a bearing fault diagnosis method based on a Multiple-Constraint Modal-Invariant Graph Convolutional Fusion Network(MCMI-GCFN)is proposed in this paper.Firstly,a Convolutional Autoencoder(CAE)and Squeeze-and-Excitation Block(SE block)are used to extract features of raw current and vibration signals.Secondly,the model introduces source domain classifiers and domain discriminators to capture modal invariance between different modal data based on domain adversarial training,making use of the redundancy and complementarity between multimodal data.Then,the spatial aggregation property of Graph Convolutional Neural Networks(GCN)is utilized to capture the dependency relationship between current and vibration modes with similar time step features for accurately fusing contextual semantic information.Finally,the validation is conducted on the public bearing damage current and vibration dataset from Paderborn University.The experimental results showed that the delivered fusion method achieved a bearing fault diagnosis accuracy of 99.6%,which was about 9%–11.4%better than that with nonfusion methods. 展开更多
关键词 Bearing fault diagnosis Data fusion Domain adversarial training GCN
在线阅读 下载PDF
Development of Fault Diagnosis System for Spacecraft Based on Fault Tree and G2 被引量:5
3
作者 纪常伟 荣吉利 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期444-448,共5页
Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level,... Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level, subsystem level, component level and element level. Secondly, a hierarchical diagnosis model is expressed with four layers, i.e., sensors layer, function layer, behavior layer and structure layer. These layers are used to work together to accomplish the fault alarm, diagnosis and localization. Thirdly, a fault-tree-oriented hybrid knowledge representation based on frame and generalized rule and its relevant reasoning strategy is put forward. Finally, a diagnosis case for spacecraft power system is exemplified combining the above with a powerful expert system development tool G2. 展开更多
关键词 spacecraft fault diagnosis fault tree hierarchical diagnosis model G2
在线阅读 下载PDF
INTELLIGENT FUSION FOR AEROENGINE WEAR FAULT DIAGNOSIS 被引量:3
4
作者 陈果 杨虞微 左洪福 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期297-303,共7页
Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement t... Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement the military aeroengine wear fault diagnosis during the test drive process. To improve the precision and the reliability of the diagnosis, the aeroengine wear fault fusion diagnosis method based on the neural networks (NN) and the Dempster-Shafter (D-S) evidence theory is proposed. Firstly, according to the standard value of the wear limit, original data are pre-processed into Boolean values. Secondly, sub-NNs are established to perform the single diagnosis, and their training samples are dependent on experiences from experts. After each sub-NN is trained, diagnosis results are obtained. Thirdly, the diagnosis results of each sub-NN are considered as the basic probability allocation value to faults. The improved D-S evidence theory is applied to the fusion diagnosis, and the final fusion results are obtained. Finally, the method is verified by a diagnosis example. 展开更多
关键词 wear fault diagnosis data fusion neural network D-S evidence theory aeroengine
在线阅读 下载PDF
Application of Maximum Probability Approach to the Fault Diagnosis of a Servo System 被引量:3
5
作者 马东升 胡佑德 戴凤智 《Journal of Beijing Institute of Technology》 EI CAS 2002年第1期29-32,共4页
In an actual control system, it is often difficult to find out where the faults are if only based on the outside fault phenomena, acquired frequently from a fault system. So the fault diagnosis by outside fault phenom... In an actual control system, it is often difficult to find out where the faults are if only based on the outside fault phenomena, acquired frequently from a fault system. So the fault diagnosis by outside fault phenomena is considered. Based on the theory of fuzzy recognition and fault diagnosis, this method only depends on experience and statistical data to set up fuzzy query relationship between the outside phenomena (fault characters) and the fault sources (fault patterns). From this relationship the most probable fault sources can be obtained, to attain the goal of quick diagnosis. Based on the above approach, the standard fuzzy relationship matrix is stored in the computer as a system database. And experiment data are given to show the fault diagnosis results. The important parameters can be on line sampled and analyzed, and when faults occur, faults can be found, the alarm is given and the controller output is regulated. 展开更多
关键词 maximum probability approach fault diagnosis fault tree servo system
在线阅读 下载PDF
SIMULATION INVESTIGATION OF AEROENGINE FAULT DIAGNOSIS USING NEURAL NETWORKS 被引量:3
6
作者 叶志锋 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期157-163,共7页
Traditional scheduled maintenance systems are costly, labor intensive, and typically provide noncomprehensive detection and diagnosis of engine faults. The engine monitoring system (EMS) on modern aircrafts has the p... Traditional scheduled maintenance systems are costly, labor intensive, and typically provide noncomprehensive detection and diagnosis of engine faults. The engine monitoring system (EMS) on modern aircrafts has the potential to provide maintenance personnel with valuable information for detecting and diagnosing engine faults. In this paper, an RBF neural network approach is applied to aeroengine gas path fault diagnosis. It can detect multiple faults and quantify the amount of deterioration of the various engine components as a function of measured parameters. The results obtained demonstrate that the accuracy of diagnosis is consistent with practical requirements. The approach takes advantage of the nonlinear mapping feature of neural networks to capture the appropriate characteristics of an aeroengine. The methodology is generic and applicable to other similar plants having high complexity. 展开更多
关键词 neural network fault diagnosis AEROENGINE
在线阅读 下载PDF
ROTOR FAULT DIAGNOSIS OF BRUSHLESS AC GENERATOR WITH ROTARY RECTIFIER 被引量:1
7
作者 龚春英 严仰光 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期64-71,共8页
With a three-phase bridge type rectification, some typical rotor faults of a brushless AC generator with a rotary rectifier is analyzed in this paper by the help of computer digital simulation. It is also proPOsed tha... With a three-phase bridge type rectification, some typical rotor faults of a brushless AC generator with a rotary rectifier is analyzed in this paper by the help of computer digital simulation. It is also proPOsed that the rotor faults, whether exist or not, and the causes of the faults may be determined through the monitoring of the average value of the exciting current of the exciter and its principal harmonics. 展开更多
关键词 brushless excitation rotors fault diagnosis SIMULATION
在线阅读 下载PDF
ROBUST FAULT DIAGNOSIS FOR HELICOPTER FCS BASED ON LINEAR PARAMETERVARYING ADAPTIVE OBSERVER
8
作者 陈伟 姜斌 +1 位作者 张柯 杨浩 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期288-294,共7页
Based on the linear parameter-varying (LPV) adaptive observer, the robust fault diagnosis for a class of LPV systems with external disturbances is studied. Since the flight control system (FCS) is nonlinear and ti... Based on the linear parameter-varying (LPV) adaptive observer, the robust fault diagnosis for a class of LPV systems with external disturbances is studied. Since the flight control system (FCS) is nonlinear and time-varying, the LPV technique is used for FCS. And then the adaptive fault estimation algorithm based on the LPV adaptive observer is proposed to estimate the fault. To minimize the effect of disturbances on the fault estimation, the H~ robust performance index is introduced to design the LPV adaptive fault diagnosis observer and the fault estimation algorithm. The result shows that the method has good estimation performance and is robust to external disturbances. The design method is presented in terms of linear matrix inequalities (LMIs). Finally, a helicopter LPV FCS model with the actuator fault is used to illustrate the effectiveness of the proposed method. 展开更多
关键词 fault diagnosis ROBUSTNESS flight control systems POLYTOPIC adaptive observer
在线阅读 下载PDF
ANN Model and Learning Algorithm in Fault Diagnosis for FMS
9
作者 史天运 王信义 +1 位作者 张之敬 朱小燕 《Journal of Beijing Institute of Technology》 EI CAS 1997年第4期45-53,共9页
The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network st... The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm 展开更多
关键词 fault diagnosis for FMS artificial neural network(ANN) improved BP algorithm optimization genetic algorithm learning speed
在线阅读 下载PDF
Fault Diagnosis of Vehicle Transmission System Based on Rough Set Theory
10
作者 李晓雷 张振华 +1 位作者 吴晓兵 田春姝 《Journal of Beijing Institute of Technology》 EI CAS 2001年第2期204-208,共5页
Rough set theory is used to treat the data of vehicle transmission system faults. The minimum fault feature vector can be obtained by calculating the importance and dependency of each attribute. Real time diagnosis, ... Rough set theory is used to treat the data of vehicle transmission system faults. The minimum fault feature vector can be obtained by calculating the importance and dependency of each attribute. Real time diagnosis, as a result, can be actualized. Ultimate decision making can be done by analyzing the consistency of decision information. The result shows that rough set theory is useful and possesses its unique merits in this field. 展开更多
关键词 rough set fault diagnosis VEHICLE transmission system
在线阅读 下载PDF
Fault Diagnosis of Mechanical Equipments Through Spectrometric oil Analysis for Worn Off Metallic Elements
11
作者 王文清 万耀青 +1 位作者 马璐 万晓东 《Journal of Beijing Institute of Technology》 EI CAS 1994年第2期183-192,共10页
In the fault prediction of mechanical equipments through spectromectric oil analysis for worn off debris, a method for the determination of the limiting value of wear is proposed and discussed. In order to diagnose th... In the fault prediction of mechanical equipments through spectromectric oil analysis for worn off debris, a method for the determination of the limiting value of wear is proposed and discussed. In order to diagnose the impending failure and to predict the fault modes and locate the fault spots, a comprehensive approach is studied and outlined on the basis of methods of discriminative analysis and fuzzy logic. A fault diagnosis expert system OAFDS developed by the authors for the nonitoring of working conditions of the ND5 locomotive diesel engine Nd5 is briefly introduced. 展开更多
关键词 expert systems fault diagnosis wears lubrication/condition monitoring
在线阅读 下载PDF
Improved BP Neural Network for Transformer Fault Diagnosis 被引量:42
12
作者 SUN Yan-jing ZHANG Shen MIAO Chang-xin LI Jing-meng 《Journal of China University of Mining and Technology》 EI 2007年第1期138-142,共5页
The back propagation (BP)-based artificial neural nets (ANN) can identify complicated relationships among dissolved gas contents in transformer oil and corresponding fault types, using the highly nonlinear mapping nat... The back propagation (BP)-based artificial neural nets (ANN) can identify complicated relationships among dissolved gas contents in transformer oil and corresponding fault types, using the highly nonlinear mapping nature of the neural nets. An efficient BP-ALM (BP with Adaptive Learning Rate and Momentum coefficient) algorithm is proposed to reduce the training time and avoid being trapped into local minima, where the learning rate and the momentum coefficient are altered at iterations. We developed a system of transformer fault diagnosis based on Dissolved Gases Analysis (DGA) with a BP-ALM algorithm. Training patterns were selected from the results of a Refined Three-Ratio method (RTR). Test results show that the system has a better ability of quick learning and global convergence than other methods and a superior performance in fault diagnosis compared to convectional BP-based neural networks and RTR. 展开更多
关键词 transformer fault diagnosis BACK-PROPAGATION artificial neural network momentum coefficient
在线阅读 下载PDF
Fault diagnosis for down-hole conditions of sucker rod pumping systems based on the FBH-SC method 被引量:9
13
作者 Kun Li Xian-Wen Gao +1 位作者 Hai-Bo Zhou Ying Han 《Petroleum Science》 SCIE CAS CSCD 2015年第1期135-147,共13页
Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accurac... Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accuracy of the training samples. In order to reduce the errors of manual classification, an automatic clustering algorithm is proposed and applied to diagnose down-hole conditions of pumping systems. The spectral clustering (SC) is a new clustering algorithm, which is suitable for any data distribution. However, it is sensitive to initial cluster centers and scale parameters, and needs to predefine the cluster number. In order to overcome these shortcom- ings, we propose an automatic clustering algorithm, fast black hole-spectral clustering (FBH-SC). The FBH algo- rithm is used to replace the K-mean method in SC, and a CritC index function is used as the target function to automatically choose the best scale parameter and clus- tering number in the clustering process. Different simulation experiments were designed to define the relationship among scale parameter, clustering number, CritC index value, and clustering accuracy. Finally, an example is given to validate the effectiveness of the proposed algorithm. 展开更多
关键词 Sucker rod pumping systems fault diagnosis Spectral clustering Automatic clustering Fast black hole algorithm
在线阅读 下载PDF
Fault Diagnosis Approach of Local Ventilation System in Coal Mines Based on Multidisciplinary Technology 被引量:18
14
作者 GONG Xiao-yan XUE He +1 位作者 TAO Xin-li HU Ning 《Journal of China University of Mining and Technology》 EI 2006年第3期317-320,共4页
In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, ... In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, genetic algorithm (GA), and intelligent decision support system (IDSS) was used to establish and develop a fault diagnosis system of local ventilation in coal mine. Fault tree model was established and its reliability analysis was performed. The algorithms and software of key fault symptom and fault diagnosis rule acquiring were also analyzed and developed. Finally, a prototype system was developed and demonstrated by a mine instance. The research results indicate that the proposed approach in this paper can accurately and quickly find the fault reason in a local ventilation system of coal mines and can reduce difficulty of the fault diagnosis of the local ventilation system, which is significant to decrease gas exploding accidents in coal mines. 展开更多
关键词 fault diagnosis local ventilation rough set theory genetic algorithm IDSS
在线阅读 下载PDF
Fault diagnosis of a mine hoist using PCA and SVM techniques 被引量:21
15
作者 CHANG Yan-wei WANG Yao-cai +1 位作者 LIU Tao WANG Zhi-jie 《Journal of China University of Mining and Technology》 EI 2008年第3期327-331,共5页
A new method based on principal component analysis (PCA) and support vector machines (SVMs) is proposed for fault diagnosis of mine hoists. PCA is used to extract the principal features associated with the gearbox. Th... A new method based on principal component analysis (PCA) and support vector machines (SVMs) is proposed for fault diagnosis of mine hoists. PCA is used to extract the principal features associated with the gearbox. Then, with the irrelevant gearbox variables removed, the remaining gearbox, the hydraulic system and the wire rope parameters were used as input to a multi-class SVM. The SVM is first trained by using the one class-based multi-class optimization algorithm and it is then applied to fault identification. Comparison of various methods showed the PCA-SVM method successfully removed redundancy to solve the dimensionality curse. These results show that the algorithm using the RBF kernel function for the SVM had the best classification properties. 展开更多
关键词 fault diagnosis principal component analysis support vector machines mine hoist
在线阅读 下载PDF
Fault diagnosis of electric transformers based on infrared image processing and semi-supervised learning 被引量:5
16
作者 Jian Fang Fan Yang +2 位作者 Rui Tong Qin Yu Xiaofeng Dai 《Global Energy Interconnection》 EI CAS CSCD 2021年第6期596-607,共12页
It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and ac... It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and accurate manner.To this end,a transformer fault diagnosis method based on infrared image processing and semi-supervised learning is proposed herein.First,we perform feature extraction on the collected infrared-image data to extract temperature,texture,and shape features as the model reference vectors.Then,a generative adversarial network(GAN)is constructed to generate synthetic samples for the minority subset of labelled samples.The proposed method can learn information from unlabeled sample data,unlike conventional supervised learning methods.Subsequently,a semi-supervised graph model is trained on the entire dataset,i.e.,both labeled and unlabeled data.Finally,we test the proposed model on an actual dataset collected from a Chinese electricity provider.The experimental results show that the use of feature extraction,sample generation,and semi-supervised learning model can improve the accuracy of transformer fault classification.This verifies the effectiveness of the proposed method. 展开更多
关键词 TRANSFORMER fault diagnosis Infrared image Generative adversarial network Semi-supervised learning
在线阅读 下载PDF
Application of Improved Genetic Algorithm in Network Fault Diagnosis Expert System 被引量:4
17
作者 苏利敏 侯朝桢 +1 位作者 戴忠健 张雅静 《Journal of Beijing Institute of Technology》 EI CAS 2003年第3期225-229,共5页
Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is ... Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is proposed. The algorithm applies operators such as selection, crossover and mutation to evolve an initial population of diagnostic rules. Especially, a self adaptive method is put forward to regulate the crossover rate and mutation rate. In the end, a knowledge acquisition problem of a simple network fault diagnostic system is simulated, the results of simulation show that the improved approach can solve the problem of convergence better. 展开更多
关键词 expert system knowledge acquisition fault diagnosis genetic algorithm
在线阅读 下载PDF
Construction of fault diagnosis system for control rod drive mechanism based on knowledge graph and Bayesian inference 被引量:3
18
作者 Xue‑Jun Jiang Wen Zhou Jie Hou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期58-75,共18页
Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research objec... Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research object,and a fault diagnosis system was proposed based on knowledge graph.The subject–relation–object triples are defined based on CRDM unstructured data,including design specification,operation and maintenance manual,alarm list,and other forms of expert experience.In this study,we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events.A three-layer robustly optimized bidirectional encoder representation from transformers(RBT3)pre-training approach combined with a text convolutional neural network(TextCNN)was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query.The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously.Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction.Additionally,a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically.Furthermore,the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system.Finally,a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed,making the CRDM fault diagnosis process intuitive and effective. 展开更多
关键词 CRDM Knowledge graph fault diagnosis Bayesian inference RBT3-TextCNN Web interface
在线阅读 下载PDF
Fault diagnosis using a probability least squares support vector classification machine 被引量:4
19
作者 GAO Yang, WANG Xuesong, CHENG Yuhu, PAN Jie School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou 221116, China 《Mining Science and Technology》 EI CAS 2010年第6期917-921,共5页
Coal mines require various kinds of machinery. The fault diagnosis of this equipment has a great impact on mine production. The problem of incorrect classification of noisy data by traditional support vector machines ... Coal mines require various kinds of machinery. The fault diagnosis of this equipment has a great impact on mine production. The problem of incorrect classification of noisy data by traditional support vector machines is addressed by a proposed Probability Least Squares Support Vector Classification Machine (PLSSVCM). Samples that cannot be definitely determined as belonging to one class will be assigned to a class by the PLSSVCM based on a probability value. This gives the classification results both a qualitative explanation and a quantitative evaluation. Simulation results of a fault diagnosis show that the correct rate of the PLSSVCM is 100%. Even though samples are noisy, the PLSSVCM still can effectively realize multi-class fault diagnosis of a roller bearing. The generalization property of the PLSSVCM is better than that of a neural network and a LSSVCM. 展开更多
关键词 fault diagnosis PROBABILITY least squares support vector classification machine roller bearing
在线阅读 下载PDF
An Effective Fault Diagnosis Method for Aero Engines Based on GSA-SAE 被引量:3
20
作者 CUI Jianguo TIAN Yan +4 位作者 CUI Xiao TANG Xiaochu WANG Jinglin JIANG Liying YU Mingyue 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第5期750-757,共8页
The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefor... The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefore,an effective fault diagnosis method for aero engines based on the gravitational search algorithm and the stack autoencoder(GSA-SAE)is proposed,and the fault diagnosis technology of a turbofan engine is studied.Firstly,the data of 17 parameters,including total inlet air temperature,high-pressure rotor speed,low-pressure rotor speed,turbine pressure ratio,total inlet air temperature of high-pressure compressor and outlet air pressure of high-pressure compressor and so on,are preprocessed,and the fault diagnosis model architecture of SAE is constructed.In order to solve the problem that the best diagnosis effect cannot be obtained due to manually setting the number of neurons in each hidden layer of SAE network,a GSA optimization algorithm for the SAE network is proposed to find and obtain the optimal number of neurons in each hidden layer of SAE network.Furthermore,an optimal fault diagnosis model based on GSA-SAE is established for aero engines.Finally,the effectiveness of the optimal GSA-SAE fault diagnosis model is demonstrated using the practical data of aero engines.The results illustrate that the proposed fault diagnosis method effectively solves the problem of the poor fault diagnosis result because of manually setting the number of neurons in each hidden layer of SAE network,and has good fault diagnosis efficiency.The fault diagnosis accuracy of the GSA-SAE model reaches 98.222%,which is significantly higher than that of SAE,the general regression neural network(GRNN)and the back propagation(BP)network fault diagnosis models. 展开更多
关键词 aero engines fault diagnosis optimization algorithm of gravitational search algorithm(GSA) stack autoencoder(SAE)network
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部