针对民机机械部件故障样本缺乏且类不平衡以及故障信号复杂多样导致的故障诊断精度低,识别不稳定的问题,提出基于增强元学习与通道注意力机制(learn to reweight with SE-1DleNet,LRS)的故障诊断方法。利用小样本平衡验证集指导了不平...针对民机机械部件故障样本缺乏且类不平衡以及故障信号复杂多样导致的故障诊断精度低,识别不稳定的问题,提出基于增强元学习与通道注意力机制(learn to reweight with SE-1DleNet,LRS)的故障诊断方法。利用小样本平衡验证集指导了不平衡训练集的损失权重更新以改善原始不均衡样本分布,提出元梯度增强的梯度裁剪策略;在1D-LeNet的基础上引入SE注意力机制对多维度故障特征通道自适应加权。结果表明:以民机大梁和机械轴承故障作为仿真试验数据集,与当前主流的故障诊断算法ProtoNet、DNCNN、GAN-CNN等相比,该方法诊断效果最优,在样本极端不平衡时准确率达95%以上,能够进行准确故障诊断。展开更多
冷水机组系统中,温度传感器出现故障会严重影响机组工作效率及使用寿命。针对冷水机组温度传感器偏差故障,本文提出一种基于单类支持向量机(one-class support vector machine,OC-SVM)的故障检测方法,采用冷水机组正常数据建立OC-SVM模...冷水机组系统中,温度传感器出现故障会严重影响机组工作效率及使用寿命。针对冷水机组温度传感器偏差故障,本文提出一种基于单类支持向量机(one-class support vector machine,OC-SVM)的故障检测方法,采用冷水机组正常数据建立OC-SVM模型,通过十折交叉验证法获得模型优化参数。分别采用工程实测数据和实验数据(共4组)对该方法进行了验证,结果表明:基于OC-SVM的方法能有效检测出4组冷水机组的温度传感器偏差故障。其中对于螺杆式冷水机组(数据集Ⅰ)的故障检测效果明显,当冷冻水侧温度传感器偏差故障幅值绝对值大于1℃时,检测效率达到100%。展开更多
文摘针对民机机械部件故障样本缺乏且类不平衡以及故障信号复杂多样导致的故障诊断精度低,识别不稳定的问题,提出基于增强元学习与通道注意力机制(learn to reweight with SE-1DleNet,LRS)的故障诊断方法。利用小样本平衡验证集指导了不平衡训练集的损失权重更新以改善原始不均衡样本分布,提出元梯度增强的梯度裁剪策略;在1D-LeNet的基础上引入SE注意力机制对多维度故障特征通道自适应加权。结果表明:以民机大梁和机械轴承故障作为仿真试验数据集,与当前主流的故障诊断算法ProtoNet、DNCNN、GAN-CNN等相比,该方法诊断效果最优,在样本极端不平衡时准确率达95%以上,能够进行准确故障诊断。
文摘冷水机组系统中,温度传感器出现故障会严重影响机组工作效率及使用寿命。针对冷水机组温度传感器偏差故障,本文提出一种基于单类支持向量机(one-class support vector machine,OC-SVM)的故障检测方法,采用冷水机组正常数据建立OC-SVM模型,通过十折交叉验证法获得模型优化参数。分别采用工程实测数据和实验数据(共4组)对该方法进行了验证,结果表明:基于OC-SVM的方法能有效检测出4组冷水机组的温度传感器偏差故障。其中对于螺杆式冷水机组(数据集Ⅰ)的故障检测效果明显,当冷冻水侧温度传感器偏差故障幅值绝对值大于1℃时,检测效率达到100%。