Removing copper from nickel electrolysis anode solution has been a major keypoint in the nickel metallurgy industry.In this study,we proposed a novel process flow to promote removing copper from nickel electrolysis an...Removing copper from nickel electrolysis anode solution has been a major keypoint in the nickel metallurgy industry.In this study,we proposed a novel process flow to promote removing copper from nickel electrolysis anode solution.A simulated nickel anode solution was designed,and static and dynamic adsorption experiments were conducted to determine the best of solution pH,adsorption time and temperature,resin dosage and particle size,and stirring speed.The optimal conditions were explored for copper removal from nickel electrolysis anode solution.Based on the optimal experimental conditions and the relevant experimental data,a novel process for copper removal from nickel electrolysis anodes was designed and verified.This novel process of copper removal from nickel electrolysis anodes was confirmed with nickel anolyte solution with nickel 50−60 g/L and copper 0.5 g/L.After finishing the novel process of copper removal,the nickel in the purified nickel anolyte became undetectable and copper concentration was 3 mg/L,the novel process of resin adsorption to remove copper from nickel anode solution through static and dynamic adsorptions has an efficacious copper removal.It is a beneficial supplement to traditional methods.展开更多
Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-...This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-and molybdenum-free high-nitrogen austenitic stainless steel(HNASS).FSW at 400 rpm and 30 mm/min resulted in finer grains(4.18μm)and higher coincident site lattice(CSL)boundaries(32.3%)at the top of the stir zone(SZ)due to dynamic recrystallization(DRX).PWHT at 900℃for 1 h led to grain coarsening(12.91μm the bottom SZ)but enhanced CSL boundaries from 24.6%to 30.2%,improving grain boundary stability.PWHT reduced the kernel average misorientation(KAM)by 14.9%in the SZ-top layer and 20.4%in the SZ-bottom layer,accompanied by a 25%decrease in hardness in the SZ-top layer and 26.7%in the SZ-bottom layer,indicating strain recovery and reduced dislocation density.Potentiodynamic polarization tests(PDP)showed a 18%increase in pitting potential and a 76%reduction in corrosion rate after PWHT.The improvement in corrosion resistance is attributed to the increase inΣ3 twin boundaries,which enhance grain boundary stability and reduce susceptibility to localized corrosion.These findings highlight the role of PWHT in refining the microstructure and strengthening corrosion resistance,making HNASS a promising material for demanding applications.展开更多
Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concent...Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concentration,and material particle size on the roasting characteristics of ferronickel fluidization reduction were investigated.Combined with X-ray diffraction,scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)characterization,the mineral phases and microscopic morphology of nickel laterite ore and its roasted ores were analyzed in depth.The results indicated that under the condition of a CO/CO_(2)ratio of 1:1,a reduction temperature of 800℃,and a reduction roasting time of 60 min,a nickel-iron concentrate with a nickel grade of 2.10%and an iron content of 45.96%was produced from a raw material with a nickel grade of 1.45%,achieving a remarkable nickel recovery rate of 46.26%.XRD and SEM-EDS analysis indicated that nickel in the concentrate mainly exists in the form of[Fe,Ni],while the unrecovered nickel in the tailings is primarily present in the form of[Fe,Ni]and Ni_(2)SiO_(4)in forsterite.This study established a theoretical foundation for further exploration of fluidized reduction roasting technology.展开更多
α-Diimide catalysts have attracted widespread attention due to their unique chain walking characteristics.A series ofα-diimide nickel/palladium catalysts with different electronic effects and steric hindrances were ...α-Diimide catalysts have attracted widespread attention due to their unique chain walking characteristics.A series ofα-diimide nickel/palladium catalysts with different electronic effects and steric hindrances were designed and synthesized for olefin polymerization.In this work,we synthesized a series of asymmetricα-diimide nickel complexes with different steric hindrances and used them for ethylene polymerization.These nickel catalysts have high ethylene polymerization activity,up to 6.51×10^(6)g·mol^(−1)·h^(−1),and the prepared polyethylene has a moderate melting point and high molecular weight(up to 38.2×10^(4)g·mol^(−1)),with a branching density distribution between 7 and 94 branches per 1000 carbons.More importantly,the polyethylene prepared by these catalysts exhibits excellent tensile properties,with strain and stress reaching 800%and 30 MPa,respectively.展开更多
The seminal report ofα-diimine palladium and nickel catalysts in 1995 represented a major breakthrough in the preparation of functionalized polyolefin materials.Owing to the high abundance and low cost of nickel,nick...The seminal report ofα-diimine palladium and nickel catalysts in 1995 represented a major breakthrough in the preparation of functionalized polyolefin materials.Owing to the high abundance and low cost of nickel,nickel-based catalysts have great application prospects in the industrialization process of olefin coordination polymerization.In this work,various N-aryl substituents with different electronic effects were synthesized and introduced intoα-diimine ligands.The aspreparedα-diimine nickel catalysts showed high polymerization activity(0.9×10^(7)–3.0×10^(7)g·mol^(−1)·h^(−1))in ethylene polymerization,generating polyethylene products with adjustable molecular weights(Mn values:7.4×10^(4)–146.9×10^(4)g·mol^(−1))and branching densities(31/1000 C–68/1000 C).The resulting polyethylene products showed excellent mechanical properties,with high tensile strength(up to 25.0 MPa)and high strain at break values(up to 3890%).The copolymerization of ethylene and polar monomers can also be achieved by these nicekel complexes,ultimately preparing functionalized polyolefins.展开更多
The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on acti...The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.展开更多
基金Project(2019yff0216502)supported by the National Key Research&Development Plan of Ministry of Science and Technology of ChinaProject(2021SK1020-4)supported by the Major Science and Technological Innovation Project of Hunan Province,China。
文摘Removing copper from nickel electrolysis anode solution has been a major keypoint in the nickel metallurgy industry.In this study,we proposed a novel process flow to promote removing copper from nickel electrolysis anode solution.A simulated nickel anode solution was designed,and static and dynamic adsorption experiments were conducted to determine the best of solution pH,adsorption time and temperature,resin dosage and particle size,and stirring speed.The optimal conditions were explored for copper removal from nickel electrolysis anode solution.Based on the optimal experimental conditions and the relevant experimental data,a novel process for copper removal from nickel electrolysis anodes was designed and verified.This novel process of copper removal from nickel electrolysis anodes was confirmed with nickel anolyte solution with nickel 50−60 g/L and copper 0.5 g/L.After finishing the novel process of copper removal,the nickel in the purified nickel anolyte became undetectable and copper concentration was 3 mg/L,the novel process of resin adsorption to remove copper from nickel anode solution through static and dynamic adsorptions has an efficacious copper removal.It is a beneficial supplement to traditional methods.
文摘Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
文摘This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-and molybdenum-free high-nitrogen austenitic stainless steel(HNASS).FSW at 400 rpm and 30 mm/min resulted in finer grains(4.18μm)and higher coincident site lattice(CSL)boundaries(32.3%)at the top of the stir zone(SZ)due to dynamic recrystallization(DRX).PWHT at 900℃for 1 h led to grain coarsening(12.91μm the bottom SZ)but enhanced CSL boundaries from 24.6%to 30.2%,improving grain boundary stability.PWHT reduced the kernel average misorientation(KAM)by 14.9%in the SZ-top layer and 20.4%in the SZ-bottom layer,accompanied by a 25%decrease in hardness in the SZ-top layer and 26.7%in the SZ-bottom layer,indicating strain recovery and reduced dislocation density.Potentiodynamic polarization tests(PDP)showed a 18%increase in pitting potential and a 76%reduction in corrosion rate after PWHT.The improvement in corrosion resistance is attributed to the increase inΣ3 twin boundaries,which enhance grain boundary stability and reduce susceptibility to localized corrosion.These findings highlight the role of PWHT in refining the microstructure and strengthening corrosion resistance,making HNASS a promising material for demanding applications.
基金Project(XDA 29020100)supported by the Strategic Priority Research Program of the Chinese Academy of SciencesProject(2022YFE0206600)supported by National Key R&D Program of China。
文摘Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concentration,and material particle size on the roasting characteristics of ferronickel fluidization reduction were investigated.Combined with X-ray diffraction,scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)characterization,the mineral phases and microscopic morphology of nickel laterite ore and its roasted ores were analyzed in depth.The results indicated that under the condition of a CO/CO_(2)ratio of 1:1,a reduction temperature of 800℃,and a reduction roasting time of 60 min,a nickel-iron concentrate with a nickel grade of 2.10%and an iron content of 45.96%was produced from a raw material with a nickel grade of 1.45%,achieving a remarkable nickel recovery rate of 46.26%.XRD and SEM-EDS analysis indicated that nickel in the concentrate mainly exists in the form of[Fe,Ni],while the unrecovered nickel in the tailings is primarily present in the form of[Fe,Ni]and Ni_(2)SiO_(4)in forsterite.This study established a theoretical foundation for further exploration of fluidized reduction roasting technology.
基金supported by the National Natural Science Foundation of China(52203016)the USTC Research Funds of the Double First-Class Initiative(YD9990002018)+3 种基金the Overseas Students Innovation and Entrepreneurship Support Program Project of Anhui Province(2021LCX022)the Key R&D Projects in Anhui Province(2022i01020012)the Natural Science Foundation of Hefei(2022039)the Excellent Research and Innovation Team Project of Anhui Province(2022AH010001).
文摘α-Diimide catalysts have attracted widespread attention due to their unique chain walking characteristics.A series ofα-diimide nickel/palladium catalysts with different electronic effects and steric hindrances were designed and synthesized for olefin polymerization.In this work,we synthesized a series of asymmetricα-diimide nickel complexes with different steric hindrances and used them for ethylene polymerization.These nickel catalysts have high ethylene polymerization activity,up to 6.51×10^(6)g·mol^(−1)·h^(−1),and the prepared polyethylene has a moderate melting point and high molecular weight(up to 38.2×10^(4)g·mol^(−1)),with a branching density distribution between 7 and 94 branches per 1000 carbons.More importantly,the polyethylene prepared by these catalysts exhibits excellent tensile properties,with strain and stress reaching 800%and 30 MPa,respectively.
基金supported by the National Key R&D Program of China(2021YFA1501700)Fundamental Research Funds for the Central Universities(WK9990000142).
文摘The seminal report ofα-diimine palladium and nickel catalysts in 1995 represented a major breakthrough in the preparation of functionalized polyolefin materials.Owing to the high abundance and low cost of nickel,nickel-based catalysts have great application prospects in the industrialization process of olefin coordination polymerization.In this work,various N-aryl substituents with different electronic effects were synthesized and introduced intoα-diimine ligands.The aspreparedα-diimine nickel catalysts showed high polymerization activity(0.9×10^(7)–3.0×10^(7)g·mol^(−1)·h^(−1))in ethylene polymerization,generating polyethylene products with adjustable molecular weights(Mn values:7.4×10^(4)–146.9×10^(4)g·mol^(−1))and branching densities(31/1000 C–68/1000 C).The resulting polyethylene products showed excellent mechanical properties,with high tensile strength(up to 25.0 MPa)and high strain at break values(up to 3890%).The copolymerization of ethylene and polar monomers can also be achieved by these nicekel complexes,ultimately preparing functionalized polyolefins.
基金Project(5227010679)supported by the National Natural Science Foundation of China。
文摘The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.