正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)调制因其高效的频带利用率和良好的抗多径能力广泛用于合作与非合作通信系统中。合作通信场景下,通常接收机可以利用已知帧结构实现OFDM信号的检测。但在非合作场景下,...正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)调制因其高效的频带利用率和良好的抗多径能力广泛用于合作与非合作通信系统中。合作通信场景下,通常接收机可以利用已知帧结构实现OFDM信号的检测。但在非合作场景下,接收机没有足够的先验信息,导致帧检测难度加大。针对这一问题,提出了一种适合于非合作通信场景的OFDM数据帧的检测算法。所提算法利用快速小波变换将含噪OFDM信号的功率包络进行小波分解与重构,对重构得到的功率包络进行差分运算后,再通过与阈值比较实现OFDM信号的帧检测。相较于混合能量检测算法,所提算法计算预设参数少,复杂度低。仿真结果表明,所提算法在加性高斯白噪声信道和多径衰落信道下带内信噪比分别取-6 dB和3 dB时即可实现零漏报率,且零漏报率的阈值选取范围比混合能量检测算法扩大了约6 dB。展开更多
A fast encoding algorithm based on the mean square error (MSE) distortion for vector quantization is introduced. The vector, which is effectively constructed with wavelet transform (WT) coefficients of images, can...A fast encoding algorithm based on the mean square error (MSE) distortion for vector quantization is introduced. The vector, which is effectively constructed with wavelet transform (WT) coefficients of images, can simplify the realization of the non-linear interpolated vector quantization (NLIVQ) technique and make the partial distance search (PDS) algorithm more efficient. Utilizing the relationship of vector L2-norm and its Euclidean distance, some conditions of eliminating unnecessary codewords are obtained. Further, using inequality constructed by the subvector L2-norm, more unnecessary codewords are eliminated. During the search process for code, mostly unlikely codewords can be rejected by the proposed algorithm combined with the non-linear interpolated vector quantization technique and the partial distance search technique. The experimental results show that the reduction of computation is outstanding in the encoding time and complexity against the full search method.展开更多
The recently developed theory of wavelet applied in the Method of Moments (MoM) to solve the electromagnetic field integral equation is presented in this paper. For one dimension problem, we briefly discuss the follow...The recently developed theory of wavelet applied in the Method of Moments (MoM) to solve the electromagnetic field integral equation is presented in this paper. For one dimension problem, we briefly discuss the following aspects: Firstly, two different methods, which are same in essence: the method of the unknown induction current expansion and the method of the integral operator expansion are used to solve the EFIE, Secondly, how to choose the wavelet basis function in wavelet MoM. For two dimension problem, the wavelet MoM is employed and compared with the conventional MoM in CPU time, computational precision and matrix spareness etc. Here, the fast wavelet transform (FWT) is used to compute the matrix elements rapidly and efficiently. Typical numerical results are presented to illustrate the concepts.展开更多
基金the National Natural Science Foundation of China (60602057)the NaturalScience Foundation of Chongqing Science and Technology Commission (2006BB2373).
文摘A fast encoding algorithm based on the mean square error (MSE) distortion for vector quantization is introduced. The vector, which is effectively constructed with wavelet transform (WT) coefficients of images, can simplify the realization of the non-linear interpolated vector quantization (NLIVQ) technique and make the partial distance search (PDS) algorithm more efficient. Utilizing the relationship of vector L2-norm and its Euclidean distance, some conditions of eliminating unnecessary codewords are obtained. Further, using inequality constructed by the subvector L2-norm, more unnecessary codewords are eliminated. During the search process for code, mostly unlikely codewords can be rejected by the proposed algorithm combined with the non-linear interpolated vector quantization technique and the partial distance search technique. The experimental results show that the reduction of computation is outstanding in the encoding time and complexity against the full search method.
文摘The recently developed theory of wavelet applied in the Method of Moments (MoM) to solve the electromagnetic field integral equation is presented in this paper. For one dimension problem, we briefly discuss the following aspects: Firstly, two different methods, which are same in essence: the method of the unknown induction current expansion and the method of the integral operator expansion are used to solve the EFIE, Secondly, how to choose the wavelet basis function in wavelet MoM. For two dimension problem, the wavelet MoM is employed and compared with the conventional MoM in CPU time, computational precision and matrix spareness etc. Here, the fast wavelet transform (FWT) is used to compute the matrix elements rapidly and efficiently. Typical numerical results are presented to illustrate the concepts.