膜蛋白在细胞生命活动中扮演着重要的角色。目前,有很多方法用来预测和分类膜转运蛋白。然而,预测膜蛋白功能的工作并不多。为了解决这个问题,基于蛋白质序列信息结合快速傅里叶变换利用支持向量机的方法预测来自TCDB数据库中的channels...膜蛋白在细胞生命活动中扮演着重要的角色。目前,有很多方法用来预测和分类膜转运蛋白。然而,预测膜蛋白功能的工作并不多。为了解决这个问题,基于蛋白质序列信息结合快速傅里叶变换利用支持向量机的方法预测来自TCDB数据库中的channels/pores,electrochemical potential-driven transporters和primary active transporters三类膜转运蛋白共1817条蛋白质的功能。模型使用20种氨基酸的分布,残基的疏水性、平均极性和溶剂化自由能为原始的特征数据,利用快速傅里叶变换将其转化为频域上的信息作为机器学习的特征输入。通过五倍交叉检验预测准确率达到了72.1%,而先前的文献报道的准确率为68.1%。论文的研究证明该方法可以有效地对channels/pores,electrochemical potential-driven transporters和primary active transporters三种不同功能的膜转运蛋白进行功能分类。展开更多
传统支持向量机分类过程的计算量和支持向量的个数成正比,当支持向量较多时,其分类过程的计算比较耗时。该文基于支持向量的稀疏性,证明了对支持向量压缩时,收紧新的快速决策函数和原始决策函数之间的误差等价于在样本空间对原始支持向...传统支持向量机分类过程的计算量和支持向量的个数成正比,当支持向量较多时,其分类过程的计算比较耗时。该文基于支持向量的稀疏性,证明了对支持向量压缩时,收紧新的快速决策函数和原始决策函数之间的误差等价于在样本空间对原始支持向量进行K均值聚类操作,据此提出了一种约简支持向量的快速分类算法FD-SVM(Fast Decision algorithm of Support Vector Machine),该算法首先对原始的支持向量进行特定比例的K均值聚类操作,聚类的中心为约简后新的支持向量,按照分类误差最小的原则构建优化模型,用二次规划方法求解得到新的支持向量的系数。标准数据集上的实验表明,保持分类精度的损失在统计意义上不明显的前提下,FD-SVM可以有效压缩支持向量的数量,提高分类速度。展开更多
文摘膜蛋白在细胞生命活动中扮演着重要的角色。目前,有很多方法用来预测和分类膜转运蛋白。然而,预测膜蛋白功能的工作并不多。为了解决这个问题,基于蛋白质序列信息结合快速傅里叶变换利用支持向量机的方法预测来自TCDB数据库中的channels/pores,electrochemical potential-driven transporters和primary active transporters三类膜转运蛋白共1817条蛋白质的功能。模型使用20种氨基酸的分布,残基的疏水性、平均极性和溶剂化自由能为原始的特征数据,利用快速傅里叶变换将其转化为频域上的信息作为机器学习的特征输入。通过五倍交叉检验预测准确率达到了72.1%,而先前的文献报道的准确率为68.1%。论文的研究证明该方法可以有效地对channels/pores,electrochemical potential-driven transporters和primary active transporters三种不同功能的膜转运蛋白进行功能分类。
文摘传统支持向量机分类过程的计算量和支持向量的个数成正比,当支持向量较多时,其分类过程的计算比较耗时。该文基于支持向量的稀疏性,证明了对支持向量压缩时,收紧新的快速决策函数和原始决策函数之间的误差等价于在样本空间对原始支持向量进行K均值聚类操作,据此提出了一种约简支持向量的快速分类算法FD-SVM(Fast Decision algorithm of Support Vector Machine),该算法首先对原始的支持向量进行特定比例的K均值聚类操作,聚类的中心为约简后新的支持向量,按照分类误差最小的原则构建优化模型,用二次规划方法求解得到新的支持向量的系数。标准数据集上的实验表明,保持分类精度的损失在统计意义上不明显的前提下,FD-SVM可以有效压缩支持向量的数量,提高分类速度。