Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by ...Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by the quadratic convergence of Newton iteration method. In order to improve the convergence speed and the separation precision of the fast ICA, an improved fast ICA algorithm is presented. The algorithm introduces an efficient Newton's iterative method with fifth-order convergence for optimizing the contrast function and gives the detail derivation process and the corresponding condition. The experimental results demonstrate that the convergence speed and the separation precision of the improved algorithm are better than that of the fast ICA.展开更多
供水管网存在大量分支接头,流体在分支接头的分流作用下产生支管流致噪声,并通过管道与泄漏声信号进行耦合。针对支管流致噪声存在下的供水管道泄漏定位问题。提出一种基于高效快速独立主成分分析(efficient fast independent component...供水管网存在大量分支接头,流体在分支接头的分流作用下产生支管流致噪声,并通过管道与泄漏声信号进行耦合。针对支管流致噪声存在下的供水管道泄漏定位问题。提出一种基于高效快速独立主成分分析(efficient fast independent component analysis,EFastICA)技术的复值域高效快速独立主成分分析(complex efficient fast independent component analysis,C-EFastICA)技术,该算法将时域瞬时线性EFastICA技术的代价函数、约束函数、迭代规则等有效地扩展到复数域,实现对含支管流致噪声的泄漏声信号分解处理。与其他主成分分析(independent component analysis,ICA)类算法固定选择非线性函数不同的是,C-EFastICA根据声信号的广义高斯性特征,自适应地选择非线性函数建立代价函数和迭代学习规则,使得算法对混合信号的分离程度更高。试验结果表明,泄漏信号和支管流致噪声均是超高斯信号,经C-EFastICA分解得到的源泄漏信号对漏点的定位相对误差低于12%,低于传统同类的C-FastICA技术。展开更多
文摘Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by the quadratic convergence of Newton iteration method. In order to improve the convergence speed and the separation precision of the fast ICA, an improved fast ICA algorithm is presented. The algorithm introduces an efficient Newton's iterative method with fifth-order convergence for optimizing the contrast function and gives the detail derivation process and the corresponding condition. The experimental results demonstrate that the convergence speed and the separation precision of the improved algorithm are better than that of the fast ICA.