The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detecti...The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detection scheme for the satellite-based AIS signal transmitted over the white Gaussian noise channel. Based on the maximum likelihood estimation and a Viterbi decoder, the proposed scheme is capable of tolerating a frequency offset up to 5% of the symbol rate. The complexity of the proposed scheme is reduced by the state-complexity reduction, which is based on per-survivor processing. Simulation results prove that the proposed non-coherent sequence detection scheme has high robustness to frequency offset compared to the relative scheme when messages collision exists.展开更多
In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics an...In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics and failure mode of reinforced concrete column, the UW-PEER structure performance database was discussed and analyzed. In order to investigate the relevance of failure mode and factors such as longitudinal reinforcement ratio, transverse reinforcement ratio, hoop spacing to depth ratio, aspect ratio, shearing resistance demand to shear capacity ratio and axial load ratio, Fisher's discriminant analysis(FDA) of the above factors was carried out. A discriminant function was developed to identify column failure mode. Results show that three factors, i.e., Vp /Vn, hoop spacing to depth ratio and aspect ratio have important influence on the failure mode. The failure mode has less to do with longitudinal reinforcement ratio, transverse reinforcement ratio and axial load ratio. Through using these three factors and the model proposed, over 85.6% of the original grouped cases were correctly classified. The value of coefficient of Vp /Vn is the largest, which means that discriminant equation is most sensitive to the shearing resistance demand to shear capacity ratio.展开更多
A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model u...A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI).展开更多
Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mo...Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mode identification and the calculation of the failure probability.Both of them are studied based on the mathematical statistics and structure reliability theory considering two kinds of uncertainty characters(earthquake variability and material randomness).Firstly,failure mode identification method is established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of progressive failure process in dam body are revealed; Secondly,for the calculation of the failure probability,mathematical model and formula are established according to the characteristics of gravity dam,which include three levels,that is element failure,path failure and system failure.A case study is presented to show the practical application of theoretical method and results of these methods.展开更多
A great number of pipelines in China are in unsatisfactory condition and faced with problems of corrosion and cracking,but there are very few approaches for underwater pipeline detection.Pipeline detection autonomous ...A great number of pipelines in China are in unsatisfactory condition and faced with problems of corrosion and cracking,but there are very few approaches for underwater pipeline detection.Pipeline detection autonomous underwater vehicle(PDAUV) is hereby designed to solve these problems when working with advanced optical,acoustical and electrical sensors for underwater pipeline detection.PDAUV is a test bed that not only examines the logical rationality of the program,effectiveness of the hardware architecture,accuracy of the software interface protocol as well as the reliability and stability of the control system but also verifies the effectiveness of the control system in tank experiments and sea trials.The motion control system of PDAUV,including both the hardware and software architectures,is introduced in this work.The software module and information flow of the motion control system of PDAUV and a novel neural network-based control(NNC) are also covered.Besides,a real-time identification method based on neural network is used to realize system identification.The tank experiments and sea trials are carried out to verify the feasibility and capability of PDAUV control system to complete underwater pipeline detection task.展开更多
文摘The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detection scheme for the satellite-based AIS signal transmitted over the white Gaussian noise channel. Based on the maximum likelihood estimation and a Viterbi decoder, the proposed scheme is capable of tolerating a frequency offset up to 5% of the symbol rate. The complexity of the proposed scheme is reduced by the state-complexity reduction, which is based on per-survivor processing. Simulation results prove that the proposed non-coherent sequence detection scheme has high robustness to frequency offset compared to the relative scheme when messages collision exists.
基金Project(2011ZA05) supported by the State Key Laboratory’s Autonomous Project of Subtropical Building Science in South China University of Technology
文摘In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics and failure mode of reinforced concrete column, the UW-PEER structure performance database was discussed and analyzed. In order to investigate the relevance of failure mode and factors such as longitudinal reinforcement ratio, transverse reinforcement ratio, hoop spacing to depth ratio, aspect ratio, shearing resistance demand to shear capacity ratio and axial load ratio, Fisher's discriminant analysis(FDA) of the above factors was carried out. A discriminant function was developed to identify column failure mode. Results show that three factors, i.e., Vp /Vn, hoop spacing to depth ratio and aspect ratio have important influence on the failure mode. The failure mode has less to do with longitudinal reinforcement ratio, transverse reinforcement ratio and axial load ratio. Through using these three factors and the model proposed, over 85.6% of the original grouped cases were correctly classified. The value of coefficient of Vp /Vn is the largest, which means that discriminant equation is most sensitive to the shearing resistance demand to shear capacity ratio.
基金supported by the National Natural Science Foundation of China(616732546157310061573101)
文摘A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI).
基金Projects(51021004,51379141)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mode identification and the calculation of the failure probability.Both of them are studied based on the mathematical statistics and structure reliability theory considering two kinds of uncertainty characters(earthquake variability and material randomness).Firstly,failure mode identification method is established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of progressive failure process in dam body are revealed; Secondly,for the calculation of the failure probability,mathematical model and formula are established according to the characteristics of gravity dam,which include three levels,that is element failure,path failure and system failure.A case study is presented to show the practical application of theoretical method and results of these methods.
基金Project(2011AA09A106)supported by the Hi-tech Research and Development Program of ChinaProject(51179035)supported by the National Natural Science Foundation of ChinaProject(2015ZX01041101)supported by Major National Science and Technology of China
文摘A great number of pipelines in China are in unsatisfactory condition and faced with problems of corrosion and cracking,but there are very few approaches for underwater pipeline detection.Pipeline detection autonomous underwater vehicle(PDAUV) is hereby designed to solve these problems when working with advanced optical,acoustical and electrical sensors for underwater pipeline detection.PDAUV is a test bed that not only examines the logical rationality of the program,effectiveness of the hardware architecture,accuracy of the software interface protocol as well as the reliability and stability of the control system but also verifies the effectiveness of the control system in tank experiments and sea trials.The motion control system of PDAUV,including both the hardware and software architectures,is introduced in this work.The software module and information flow of the motion control system of PDAUV and a novel neural network-based control(NNC) are also covered.Besides,a real-time identification method based on neural network is used to realize system identification.The tank experiments and sea trials are carried out to verify the feasibility and capability of PDAUV control system to complete underwater pipeline detection task.