期刊文献+
共找到210,601篇文章
< 1 2 250 >
每页显示 20 50 100
Shear mechanical properties and debonding failure mechanisms of bolt-resin-rock anchoring system with anisotropic interfaces
1
作者 NIE Xin-xin YIN Qian +7 位作者 TAO Zhi-gang GUO Long-ji RIABOKON Evgenii ZHU De-fu XIE Liang-fu ZHA Wen-hua WANG Lin-feng REN Ya-jun 《Journal of Central South University》 2025年第7期2535-2552,共18页
This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of co... This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of constant normal load(F_(s)),constant normal stiffness(K),and shear rate(v).A systematic analysis of shear mechanical properties,the evolution of maximum principal strain field,and damage characteristics along shear failure surface is presented.Results from direct shear tests demonstrate that initial shear slip diminishes with increasing F_(s)and K,attributed to the normal constraint strengthening effect,while an increase in v enhances initial shear slip due to attenuated deformation coordination and stress transfer.As F_(s)increases from 7.5 to 120 kN,K from 0 to 12 MPa/mm,and v from 0.1 to 2 mm/min,the peak shear load increases by 210.32%and 80.16%with rising F_(s)and K,respectively,while decreases by 38.57%with increasing v.Correspondingly,the shear modulus exhibits,respectively,a 135.29%and 177.06%increase with rising F_(s)and K,and a 37.03%decrease with larger v.Initial shear dilation is identified as marking the formation of shear failure surface along anisotropic interfaces,resulting from the combined shear actions at the resin bolt interface,where resin undergoes shear by bolt surface protrusions,and the resin-rock interface,where mutual shear occurs between resin and rock.With increasing F_(s)and K and decreasing v,the location of the shear failure surface shifts from the resin-rock interface to the resin-bolt interface,accompanied by a transition in failure mode from tensile rupture of resin to shear off at the resin surface. 展开更多
关键词 anchoring system anisotropic interfaces shear mechanical properties strain field evolution debonding failure
在线阅读 下载PDF
High-temperature tensile failure mechanism of RTM-made composite T-joints
2
作者 Yujin Zhang Evance Obara +5 位作者 Shuai Wang Longyu Zhu Weidong Li Shiyun Lin Zhilin Han Chuyang Luo 《Defence Technology(防务技术)》 2025年第7期371-386,共16页
This paper focuses on the high-temperature tensile failure mechanism of RTM(resin transfer moulding)-made symmetric and asymmetric composite T-joints.The failure modes as well as the load-displacement curves of symmet... This paper focuses on the high-temperature tensile failure mechanism of RTM(resin transfer moulding)-made symmetric and asymmetric composite T-joints.The failure modes as well as the load-displacement curves of symmetric(three specimens)and asymmetric(three specimens)composite T-joints were determined by tensile tests at room and high temperatures.Progressive damage models(PDMs)of symmetric and asymmetric composite T-joints at room and high temperatures were established based on mixed criteria,and the result predicted from the aforementioned PDMs were compared with experimental data.The predicted initial and final failure loads and failure modes are in good agreement with the experimental results.The failure mechanisms of composite T-joints at different temperatures were investigated by scanning electron microscopy.The results reveal that while the failure mode of asymmetric T-joints at high temperatures resembles that at room temperature,there is a difference in the failure modes of symmetric T-joints.The ultimate failure load of symmetric and asymmetric T-joints at elevated temperatures increases and reduces by 18.4%and 4.97%,albeit with a more discrete distri-bution.This work is expected to provide us with more knowledge about the usability of composite T-joints in elevated temperature environments. 展开更多
关键词 COMPOSITE Failute mechanism T-JOINT High temperature Resin transfer moulding
在线阅读 下载PDF
Ground response and failure mechanism of gob-side entry by roof cutting with hard main roof 被引量:1
3
作者 ZHU Heng-zhong XU Lei WEN Zhi-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2488-2512,共25页
This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensi... This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices. 展开更多
关键词 gob-side entry by roof cutting ground response failure mechanism following mining states control hard main roof
在线阅读 下载PDF
Syntheses,crystal structures,and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ)metal-organic frameworks
4
作者 CHEN Yukun FENG Kexin +2 位作者 ZHANG Bolun SONG Wentao ZHANG Jianjun 《无机化学学报》 北大核心 2025年第6期1227-1234,共8页
The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and... The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and[Mg_(2)(L)_(2)(DMSO)_(3)(H_(2)O)](2)with a 2D(4,4)-net structure.Interestingly,the two compounds exhibit distinct luminescent responses to external mechanical stimuli.1 exhibited exceptional resistance mechanical chromic luminescence(RMCL),which can be attributed to the predominant hydrogen bonds and the presence of high-boiling-point solvent molecules within its structure.2 had a reversible MCL property,which can be attributed to the dominantπ-πweak interactions,coupled with the reversible destruction/restoration of its crystallinity under grinding/fumigation.CCDC:2410963,1;2410964,2. 展开更多
关键词 metal-organic framework crystal structure mechanical chromic luminescence resistance mechanical chromic luminescence weak interaction
在线阅读 下载PDF
Numerical Simulation of the Model Ice Flexural Strength Based on Tsai-Wu Failure Criterion
5
作者 GUO Chun−yu ZHANG Cheng−sen +1 位作者 WANG Chao WANG Chun−hui 《船舶力学》 北大核心 2025年第6期976-985,共10页
In the past few decades,the navigation performance of ships and structures in ice-covered waters has not been fully studied,especially the influence of ice mechanical properties on icebreaking ability.Ice bending stre... In the past few decades,the navigation performance of ships and structures in ice-covered waters has not been fully studied,especially the influence of ice mechanical properties on icebreaking ability.Ice bending strength is a key ice parameter for predicting ship ice loads,and accurate ice bending strength is also the key to scaling model tests results to real ship.However,numerical simulation studies on model ice bending strength of ice tanks are often neglected.In this paper,an explicit finite element method model is used to simulate the ice cantilever beam test,and the failure load and bending strength of the ice are obtained.In this model,the Tsai-Wu failure criterion is used as the material constitutive model,and the required simulation parameters are obtained from the model ice test in ice tank.Parameter sensitivity analysis shows that the cantilever beam size of the model ice has a significant effect on the flexural strength.The results show that proper rounding at the root of the cantilever beam is beneficial to reduce stress concentration and obtain more accurate bending strength;the thickness,width and length of the cantilever beam should conform to a certain ratio,and consistent with the ITTC recommended reference.Therefore,the results of this study can promote model ice experiments and numerical studies and provide ice strength data support for ship design and polar ship maneuvering. 展开更多
关键词 model ice LS-DYNA Tsai-Wu failure criterion cantilever beam test
在线阅读 下载PDF
Effects of Warm Rolling on the Microstructure and Mechanical Properties of Low-Cr FeCrAl Alloys at Room and Elevated Temperatures
6
作者 CHEN Gangming WANG Hui HUANG Xuefei 《材料导报》 北大核心 2025年第9期178-188,共11页
The effects of different warm rolling(WR)reductions on the microstructure and mechanical properties of low-Cr FeCrAl alloys at both room and elevated temperatures were investigated.The study revealed that when the WR ... The effects of different warm rolling(WR)reductions on the microstructure and mechanical properties of low-Cr FeCrAl alloys at both room and elevated temperatures were investigated.The study revealed that when the WR reduction is small,it effectively refines the grains and forms a large number of subgrains in the matrix,while also inducing the dissolution of the Laves phase.This enhances the mechanical properties of FeCrAl alloys primarily through grain refinement and solid solution strengthening.Conversely,with larger WR reductions,the grain refinement effect diminishes,but a significant number of Laves phases form in the matrix,strengthening the alloys primarily through precipitation strengthening.WR exhibited a remarkable enhancing effect on the comprehensive mechanical properties at both room and high temperatures,with a signi-ficant enhancement in ductility at high temperatures.Notably,a 10%WR reduction resulted in the optimal overall mechanical properties at both room and elevated temperatures. 展开更多
关键词 FeCrAl alloy low-Cr warm rolling Laves phases mechanical property
在线阅读 下载PDF
Failure mechanisms and destruction characteristics of cemented coal gangue backfill under compression effect of non-uniform load 被引量:1
7
作者 FENG Guo-rui GUO Wei +5 位作者 QI Ting-ye LI Zhu CUI Jia-qing WANG Hao-chen CUI Ye-kai MA Jing-kai 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2676-2693,共18页
Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the sta... Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill. 展开更多
关键词 cemented coal gangue backfill non-uniform load degree of non-uniformity of load failure mode crack opening displacement
在线阅读 下载PDF
Experimental studies and failure mechanisms of strain andfault-slip rockburst:A review
8
作者 ZHANG Qing-he WEI Chun-xu +3 位作者 YUAN Liang LIANG Zhi-wei YANG Fa-wang WANG Xiao-rui 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3741-3781,共41页
In recent years,rockburst have gained significant attention as a crucial topic in rock engineering.Strain andfault-slip rockburst are two common types that occur frequently and cause substantial damage.The objective o... In recent years,rockburst have gained significant attention as a crucial topic in rock engineering.Strain andfault-slip rockburst are two common types that occur frequently and cause substantial damage.The objective of thisreview is to conduct a comprehensive study on the experiments and failure mechanisms of strain and fault-slip rockburst.Firstly,the article analyzes the evolving trends in experimental research on rockburst in the past decade,highlightingmechanical properties and failure modes as the primary research focuses in understanding rockburst mechanisms.Subsequently,it provides an overview of the experimental techniques and methods employed for studying both types ofrockburst.Then,with a focus on the mechanical properties and failure modes,the article conducts an extensive analysisof the failure mechanisms associated with strain and fault-slip rockburst.By analyzing experimental data and observingthe failure characteristics of samples,it discusses the variations and common features exhibited by these two types ofrockburst under various test conditions.This analysis is of paramount importance in revealing the causes of rockburstformation and development,as well as in predicting rockburst trends and assessing associated risks.Lastly,thelimitations of current rockburst experiments and future research directions are discussed,followed by a comprehensivesummary of the entire article. 展开更多
关键词 strain rockburst fault-slip rockburst experimental techniques experimental methods failure mechanisms
在线阅读 下载PDF
A review of extreme condition effects on solder joint reliability:Understanding failure mechanisms
9
作者 Norliza Ismail Wan Yusmawati Wan Yusoff +2 位作者 Azuraida Amat Nor Azlian Abdul Manaf Nurazlin Ahmad 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期134-158,共25页
Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties w... Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions.Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint.This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions.This study covers an in-depth analysis of effect extreme temperature,mechanical stress,and radiation conditions towards solder joint.Impact of each condition to the microstructure including solder matrix and intermetallic compound layer,and mechanical properties such as fatigue,shear strength,creep,and hardness was thoroughly discussed.The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding.Furthermore,the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions.The findings offer valuable guidance for researchers,engineers,and practitioners involved in electronics,engineering,and related fields,fostering advancements in solder joint reliability and performance. 展开更多
关键词 Solder joint Extreme condition failure mechanism Defence and military RELIABILITY
在线阅读 下载PDF
Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics
10
作者 SUN Yuxuan WANG Zheng +5 位作者 SHI Xue SHI Ying DU Wentong MAN Zhenyong ZHENG Liaoying LI Guorong 《无机材料学报》 北大核心 2025年第5期545-551,I0009-I0010,共9页
The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy beco... The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy becomes defect dipole,which prevents the domain rotation.In this field,a serious problem is that generally,Qm decreases as the temperature(T)increases,since the oxygen vacancies are decoupled from the defect dipoles.In this work,Q_(m) of Pb_(0.95)Sr_(0.05)(Zr_(0.53)Ti_(0.47))O_(3)(PSZT)ceramics doped by 0.40%Fe_(2)O_(3)(in mole)abnormally increases as T increases,of which the Qm and piezoelectric coefficient(d_(33))at room temperature and Curie temperature(TC)are 507,292 pC/N,and 345℃,respectively.The maximum Qm of 824 was achieved in the range of 120–160℃,which is 62.52%higher than that at room temperature,while the dynamic piezoelectric constant(d_(31))was just slightly decreased by 3.85%.X-ray diffraction(XRD)and piezoresponse force microscopy results show that the interplanar spacing and the fine domains form as temperature increases,and the thermally stimulated depolarization current shows that the defect dipoles are stable even the temperature up to 240℃.It can be deduced that the aggregation of oxygen vacancies near the fine domains and defect dipole can be stable up to 240℃,which pins domain rotation,resulting in the enhanced Q_(m) with the increasing temperature.These results give a potential path to design high Q_(m) at high temperature. 展开更多
关键词 defect dipole temperature characteristic oxygen vacancy electro-mechanical property mechanical quality factor hardening doping
在线阅读 下载PDF
Innovative dispersion techniques of graphene nanoplatelets(GNPs)through mechanical stirring and ultrasonication:Impact on morphological,mechanical,and thermal properties of epoxy nanocomposites
11
作者 Vasi Uddin Siddiqui S.M.Sapuan Mohd Roshdi Hassan 《Defence Technology(防务技术)》 2025年第1期13-25,共13页
Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological beh... Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential. 展开更多
关键词 Graphene nanoplatelets Epoxy Nanocomposites mechanical properties Thermal properties mechanical stirrer Sonication
在线阅读 下载PDF
Simulation and Experimental Analysis of Mechanical Properties of a Bidirectional Adjustable Magnetorheological Fluid Damper
12
作者 YANG Zhi−rong YE Zhong−min +2 位作者 LIU Jin−liang RAO Zhu−shi XIAO Wang−qiang 《船舶力学》 北大核心 2025年第6期1000-1012,共13页
The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achie... The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achieve this,a bidirectional adjustable MRF damper was designed and developed.Magnetic field simulation analysis was conducted on the damper,along with simulation analysis on its dynamic characteristics.The dynamic characteristics were ultimately validated through experimental testing on the material testing machine,thereby corroborating the theoretical simulation results.Concurrently,this process generated valuable test data for subsequent implementation of the semi-active vibration control system.The simulation and test results demonstrate that the integrated permanent magnet effectively accomplishes bidirectional regulation.The magnetic induction intensity of the damping channel is 0.2 T in the absence of current,increases to 0.5 T when a maximum forward current of 4 A is applied,and becomes 0 T when a maximum reverse current of 3.8 A is applied.When the excitation amplitude is 8 mm and the frequency is 2 Hz,with the applied currents varying,the maximum damping force reaches 8 kN,while the minimum damping force measures at 511 N.Additionally,at zero current,the damping force stands at 2 kN,which aligns closely with simulation results.The present paper can serve as a valuable reference for the design and research of semi-active MRF dampers. 展开更多
关键词 magnetorheological fluid(MRF) DAMPER permanent magnet finite element analysis test of mechanical properties
在线阅读 下载PDF
Compression-shear micro-and macro-failure characteristics of red sandstone
13
作者 LI Xue-feng DU Kun +2 位作者 WANG Li-chang ZHOU Jian YANG Tao 《Journal of Central South University》 2025年第2期437-448,共12页
The mechanical parameters and failure characteristics of sandstone under compressive-shear stress states provide crucial theoretical references for underground engineering construction.In this study,a series of varied... The mechanical parameters and failure characteristics of sandstone under compressive-shear stress states provide crucial theoretical references for underground engineering construction.In this study,a series of varied angle shear tests(VASTs)were designed using acoustic emission(AE)detection and digital image correlation technologies to evaluate the mechanical behaviors of typical red sandstone.AE signal parameters revealed differences in the number and intensity of microcracks within the sandstone,with a test angle(α)of 50°identified as a significant turning point for its failure properties.Whenα³50°,microcrack activity intensified,and the proportion of tensile cracks increased.Asαincreased,the number of fragments generated after failure decreased,fragment sizes became smaller,and the crack network simplified.Cracks extended from the two cut slits at the ends of the rock,gradually penetrating along the centerline towards the central location,as observed from the evolution of the strain concentration field.Both cohesion(c)and internal friction angle(ϕ)measured in VAST were lower than those measured under conventional triaxial compression. 展开更多
关键词 compressive-shear stress acoustic emission failure properties shear parameter
在线阅读 下载PDF
Reliability analysis of modular charge swinging-loading positioning accuracy under new failure criterion based on spatial geometric relationship
14
作者 Zihan Wang Linfang Qian +3 位作者 Liu Yang Taisu Liu Weiwei Chen Haolin Zhang 《Defence Technology(防务技术)》 2025年第6期115-130,共16页
The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a mult... The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a multi degree-of-freedom swinging-loading-integrated rigid-flexible coupling system is established.This model is based on the identification of key parameters and platform experiments.Based on the spatial geometric relationship between the breech and loader during modular charge transfer and the possible maximum interference depth of the modular charge,a new failure criterion for estimating the reliability of swinging-loading positioning accuracy is proposed.Considering the uncertainties in the operation of the pendulum loader,the direct probability integration method is introduced to analyze the reliability of the swinging-loading positioning accuracy under three different charge numbers.The results indicate that under two and four charges,the swinging-loading process shows outstanding reliability.However,an unstable stage appears when the swinging motion occurred under six charges,with a maximum positioning failure probability of 0.0712.A comparison between the results obtained under the conventional and proposed criteria further reveals the effectiveness and necessity of the proposed criterion. 展开更多
关键词 Artillery loading system Pendulum loader Dynamic model failure criterion Reliability analysis
在线阅读 下载PDF
Strength and failure characteristics of hard rock containing a single structural plane under varied loading angles : A true triaxial investigation
15
作者 XU Huai-sheng LI Shao-jun +3 位作者 XU Ding-ping LIU Xu-feng FENG Guang-liang WANG Zhao-feng 《Journal of Central South University》 2025年第5期1903-1921,共19页
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr... The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures. 展开更多
关键词 true triaxial compression hard rock structural plane loading angle STRENGTH failure characteristics
在线阅读 下载PDF
Failure behavior of rock and steel slag cemented paste backfill composite structures under uniaxial compression:Effects of interface angle and steel slag content
16
作者 HAO Jian-shuai ZHOU Zi-han +1 位作者 CHEN Zhong-hui CHE Zeng-hui 《Journal of Central South University》 2025年第7期2679-2695,共17页
The stability of the“surrounding rock-backfill”com posite system is crucial for the safety of mining stopes.This study systematically investigates the effects of steel slag(SS)content and interface angle on the stre... The stability of the“surrounding rock-backfill”com posite system is crucial for the safety of mining stopes.This study systematically investigates the effects of steel slag(SS)content and interface angle on the strength and failure characteristics of rock and SS-cemented paste backfill composite specimens(RBCS)through uniaxial compression strength tests(UCS),acoustic emission systems(AE),and 3 D digital image correlation monitoring technology(3 D-DIC).The intrinsic mechanism by which SS content influences the strength of SS-CPB was revealed through an analysis of its hydration reaction degree and microstructural characteristics under varying SS content.Moreover,a theoretical strength model incorporating different interface angles was developed to explore the impact of interface inclination on failure modes and mechanical strength.The main conclusions are as follows:The incorporation of SS enhances the plastic characteristics of RBCS and reduces its brittleness,with the increase of SS content,the stress-strain curve of RBCS in the“staircase-like”stag e becomes smoother;When the interface angle is 45°,the RBCS stress-strain curve exhibits a bimodal feature,and the failure mode changes from Y-shaped fractures to interface and axial splitting;The addition of SS results in a reduction of hydration products such as Ca(OH)_(2) in the backfill cementing system and an increase in harmful pores,which weakens the bonding performance and strength of RBCS,and the SS content should not exceed 45%;As the interface angle increases,the strength of RBCS decreases,and the critical interface slip angle decreases first and then increases with the increase in the E S/E R ratio.This study provides technical references for the large-scale application of SS in mine backfill. 展开更多
关键词 steel slag-cemented paste backfill interface angle rock-backfill composite structures failure mode
在线阅读 下载PDF
Cascading failure analysis of an interdependent network with power-combat coupling
17
作者 WANG Yang TAO Junyong +2 位作者 ZHANG Yun’an BAI Guanghan DUI Hongyan 《Journal of Systems Engineering and Electronics》 2025年第2期405-422,共18页
Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analy... Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analysis of interdependent net-works is insufficient for describing the load characteristics and dependencies of subnetworks,and it is difficult to use for model-ing and failure analysis of power-combat(P-C)coupling net-works.This paper considers the physical characteristics of the two subnetworks and studies the mechanism of fault propaga-tion between subnetworks and across systems.Then the surviv-ability of the coupled network is evaluated.Firstly,an integrated modeling approach for the combat system and power system is predicted based on interdependent network theory.A heteroge-neous one-way interdependent network model based on proba-bility dependence is constructed.Secondly,using the operation loop theory,a load-capacity model based on combat-loop betweenness is proposed,and the cascade failure model of the P-C coupling system is investigated from three perspectives:ini-tial capacity,allocation strategy,and failure mechanism.Thirdly,survivability indexes based on load loss rate and network sur-vival rate are proposed.Finally,the P-C coupling system is con-structed based on the IEEE 118-bus system to demonstrate the proposed method. 展开更多
关键词 cascading failure survivability analysis interdepen-dent network power-combat(P-C)coupling.
在线阅读 下载PDF
Mechanical properties and wear behavior of extruded basalt fibers/7075 aluminum matrix composites used for drill pipes
18
作者 MA Yin-long SUN Zhi-gang +3 位作者 XIONG Hong-wei REN Jie ZHAO Jing-jing GUO Cheng-bin 《Journal of Central South University》 2025年第1期21-33,共13页
Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot presse... Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes. 展开更多
关键词 aluminum matrix composites basalt fibers mechanical properties wear behavior
在线阅读 下载PDF
Mechanical properties and permeability evolution of sandstone subjected to the coupling effects of chemical-seepage-stress
19
作者 WANG Wei CHEN Chao-wei +3 位作者 CAO Ya-jun JIA Yun LIU Shi-fan SHEN Wan-qing 《Journal of Central South University》 2025年第2期552-565,共14页
In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepa... In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields. 展开更多
关键词 red sandstone chemical corrosion multi-field coupling mechanical characteristics permeability evolution
在线阅读 下载PDF
Nonlinear asymmetric thermomechanical buckling of shallow nanoscale arches having dissimilar end conditions embracing nonlocality and strain gradient size dependencies
20
作者 Saeid Sahmani Kamila Kotrasova +2 位作者 Mona Zareichian Jian Sun Babak Safaei 《Defence Technology(防务技术)》 2025年第5期67-82,共16页
The undercurrent research survey explores the roles of nonlocality and strain gradient size dependencies in nonlinear asymmetric buckling of shallow nanoscale arches having dissimilar end conditions through a numerica... The undercurrent research survey explores the roles of nonlocality and strain gradient size dependencies in nonlinear asymmetric buckling of shallow nanoscale arches having dissimilar end conditions through a numerical analysis.The arches,made from a functionally graded graphene nanofiller reinforced composite(FG-GNRC),are subjected to discretional radial concentrated loads along with converting of temperature.To account for the size dependencies,the exploration is carried out stemming from the nonlocal strain gradient theory(NSGT)in the sense of a quasi-2D parabolic shear flexible concept of curved beam.The material properties of the contemplated FG-GNRC sandwich are determined using the modified Halpin-Tsai micromechanics model.Subsequently,an extended isogeometric analysis(XIGA)is manipulated comprising insertion plus multiplication of knots to achieve the demanded lower continuity allocated to the integration between flexural and tangential reflexes.It is perceived that the both softening and stiffening concomitants assigned to the salient concentrated radial loads obtained by the developed NSGT-based XIGA diminish from the first upper limit to the second one,and then likewise from the first lower limit to the second one.Although,by becoming the upsurge in temperature higher,these softening and stiffening concomitants get more remarkable. 展开更多
关键词 Nanotechnology Size-dependent mechanical responses Sandwich composites Extended isogeometric analysis Curved beams
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部