期刊文献+
共找到107篇文章
< 1 2 6 >
每页显示 20 50 100
A Novel Kernel for Least Squares Support Vector Machine
1
作者 冯伟 赵永平 +2 位作者 杜忠华 李德才 王立峰 《Defence Technology(防务技术)》 SCIE EI CAS 2012年第4期240-247,共8页
Extreme learning machine(ELM) has attracted much attention in recent years due to its fast convergence and good performance.Merging both ELM and support vector machine is an important trend,thus yielding an ELM kernel... Extreme learning machine(ELM) has attracted much attention in recent years due to its fast convergence and good performance.Merging both ELM and support vector machine is an important trend,thus yielding an ELM kernel.ELM kernel based methods are able to solve the nonlinear problems by inducing an explicit mapping compared with the commonly-used kernels such as Gaussian kernel.In this paper,the ELM kernel is extended to the least squares support vector regression(LSSVR),so ELM-LSSVR was proposed.ELM-LSSVR can be used to reduce the training and test time simultaneously without extra techniques such as sequential minimal optimization and pruning mechanism.Moreover,the memory space for the training and test was relieved.To confirm the efficacy and feasibility of the proposed ELM-LSSVR,the experiments are reported to demonstrate that ELM-LSSVR takes the advantage of training and test time with comparable accuracy to other algorithms. 展开更多
关键词 计算技术 理论 方法 自动机理论
在线阅读 下载PDF
改进黑猩猩算法的光伏发电功率短期预测 被引量:6
2
作者 谢国民 陈天香 《电力系统及其自动化学报》 CSCD 北大核心 2024年第2期135-143,共9页
针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,... 针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,进行光伏功率预测。首先,利用密度聚类和混合评价函数改进K-means++对原始数据进行自适应类别划分。其次,通过相关性分析和随机森林特征提取构建模型的输入特征集。最后,根据特征集建立基于DK-PCHOA-LSSVM的短期光伏发电预测模型。结合实际算例,结果表明:该模型在恶劣天气下预测精度明显优于其他模型,验证了其有效性和优越性。 展开更多
关键词 光伏功率短期预测 自适应聚类 最小二乘支持向量机 黑猩猩优化算法 极端天气
在线阅读 下载PDF
结合SVM与XGBoost的链式多路径覆盖测试用例生成 被引量:2
3
作者 钱忠胜 俞情媛 +3 位作者 张丁 姚昌森 秦朗悦 成轶伟 《软件学报》 EI CSCD 北大核心 2024年第6期2795-2820,共26页
机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借... 机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借助遗传算法实现多路径测试数据生成.首先,利用一定样本训练若干个用于预测路径节点状态的子模型(SVM和XGBoost),通过子模型的预测精度值筛选最优子模型,并根据路径节点顺序将其依次链接,形成一个链式模型C-SVMXGBoost(chained SVM and XGBoost).在利用遗传算法生成测试用例时,使用训练好的链式模型代替插桩法获取测试数据覆盖路径(预测路径),寻找预测路径与目标路径相似的路径集,对存在相似路径集的预测路径进行插桩验证,获取精确路径,计算适应度值.在交叉变异过程中引入样本集中路径层级深度较大的优秀测试用例进行重用,生成覆盖目标路径的测试数据.最后,保留进化生成中产生的适应度较高的个体,更新链式模型C-SVMXGBoost,进一步提高测试效率.实验表明,C-SVMXGBoost较其他各对比链式模型更适合解决路径预测问题,可提高测试效率.并且通过与已有经典方法相比,所提方法在覆盖率上提高可达15%,平均进化代数也有所降低,在较大规模程序上其降低百分比可达65%. 展开更多
关键词 测试用例 SVM XGBoost 链式模型 多路径覆盖
在线阅读 下载PDF
基于D-S证据理论的配电网接地故障原因综合辨识模型 被引量:4
4
作者 胡云鹏 都成刚 +4 位作者 齐军 郑日红 阿敏夫 张浩 梁永亮 《中国电力》 CSCD 北大核心 2024年第10期133-142,共10页
单相接地故障(single-phase-to-ground fault,SPGF)是配电网中最常见的故障,严重影响配电系统的可靠性和安全性,准确辨识SPGF可以提高配电网接地故障处理的精细化水平。首先,从故障波形中提取能有效反映不同接地故障原因的多域特征组成... 单相接地故障(single-phase-to-ground fault,SPGF)是配电网中最常见的故障,严重影响配电系统的可靠性和安全性,准确辨识SPGF可以提高配电网接地故障处理的精细化水平。首先,从故障波形中提取能有效反映不同接地故障原因的多域特征组成候选波形特征集,通过多元方差法分析波形特征与接地故障原因的相关性,筛选识别接地故障原因的有效特征;然后,分别设计基于极限学习机和支持向量机的故障原因辨识模型,利用Dempster-Shafer(D-S)证据融合理论对模型的识别结果进行融合,建立了接地故障原因综合辨识模型;最后,基于现场数据对所建立的综合辨识模型的有效性进行了验证,结果表明综合辨识模型优于任何单一辨识模型,验证了该模型的优势和可行性。 展开更多
关键词 接地故障原因 单相接地故障 极限学习机 支持向量机 D-S证据理论
在线阅读 下载PDF
基于高光谱的不同生育期玉米花青素含量估测 被引量:2
5
作者 郭松 常庆瑞 +2 位作者 赵泽英 李莉婕 童倩倩 《江苏农业学报》 CSCD 北大核心 2024年第2期303-311,共9页
花青素(Anthocyanin)是玉米体内的重要色素,对花青素含量的便捷、无损估测对监测玉米长势具有重要意义。利用关中地区拔节期、大喇叭口期、抽雄期以及乳熟期玉米冠层叶片Anth值及高光谱数据建立多个单因素模型和多因素模型。结果表明,... 花青素(Anthocyanin)是玉米体内的重要色素,对花青素含量的便捷、无损估测对监测玉米长势具有重要意义。利用关中地区拔节期、大喇叭口期、抽雄期以及乳熟期玉米冠层叶片Anth值及高光谱数据建立多个单因素模型和多因素模型。结果表明,不同生育期玉米叶片原始光谱特征总体一致、局部不同。变换光谱的特征波段与Anth值相关性优于原始光谱,其中一阶导数光谱特征波段最优。连续投影算法(SPA)降维能力较好,筛选出的建模参数在2~27个。最优单因素模型与多元性线性回归模型精度均为抽雄期最优,拔节期和大喇叭口期次之,乳熟期最差。所有模型中,抽雄期基于一阶导数光谱的麻雀搜索算法-极限学习机回归(SSA-ELMR)模型精度最佳,该模型建模与验证R2分别为0.847、0.895,相应nRMSE为6.44%和7.21%。本研究结果表明抽雄期是玉米叶片花青素含量反演的最佳时期,极限学习机能进一步提升传统模型精度。 展开更多
关键词 玉米 花青素 光谱变换 支持向量回归 极限学习机回归
在线阅读 下载PDF
基于光谱—空间特征的ASTER影像岩性分类研究——以甘肃北山白峡尼山地区为例 被引量:2
6
作者 梅佳成 刘磊 +2 位作者 尹春涛 张群佳 王乐 《地质论评》 CAS CSCD 北大核心 2024年第1期239-250,共12页
遥感岩性制图是地质填图中的重要工作,基于光谱特征的岩性分类易受到色调、纹理等因素影响导致精度不佳。前人进行岩性自动分类研究多关注影像的光谱特征,而忽略空间特征,笔者等基于甘肃北山白峡尼山地区ASTER影像,将支持向量机、极限... 遥感岩性制图是地质填图中的重要工作,基于光谱特征的岩性分类易受到色调、纹理等因素影响导致精度不佳。前人进行岩性自动分类研究多关注影像的光谱特征,而忽略空间特征,笔者等基于甘肃北山白峡尼山地区ASTER影像,将支持向量机、极限学习机两种机器学习分类方法与基于空间特征的快速漂移算法相结合进行岩性分类。结果表明支持向量机分类总体精度为89.17%;极限学习机不但具有需调节参数少的优势,且分类精度和速度均优于支持向量机,分类总体精度达96.70%;利用快速漂移算法提取的影像空间特征可有效减少错分区,提升岩性分类效果。研究证实将基于光谱特征的极限学习机和基于空间特征的快速漂移算法结合的岩性分类方法具有客观、高效、高精度等优势,可为后续地质填图和找矿勘查工作提供可靠数据支撑,在遥感岩性分类领域具有较高的推广价值。 展开更多
关键词 岩性分类 支持向量机 极限学习机 快速漂移 机器学习 北山
在线阅读 下载PDF
基于P-L双重特征提取的PEMFC系统故障诊断方法 被引量:4
7
作者 贺飞 张雪霞 陈维荣 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期492-499,共8页
针对质子交换膜燃料电池系统故障诊断问题,提出基于P-L双重特征提取的故障诊断方法。使用P-L双重特征提取对预处理后的样本数据进行特征提取,通过冗余变量剔除与二次特征提取,最大程度保留分类特征并有效降低样本数据维度。利用二叉树... 针对质子交换膜燃料电池系统故障诊断问题,提出基于P-L双重特征提取的故障诊断方法。使用P-L双重特征提取对预处理后的样本数据进行特征提取,通过冗余变量剔除与二次特征提取,最大程度保留分类特征并有效降低样本数据维度。利用二叉树多类支持向量机与极限学习机对二维故障特征向量进行分类实现故障诊断。通过实例验证,对比线性判别分析的特征提取效果,P-L双重特征提取可使相同分类器测试集诊断准确率提高21.19%,诊断准确率达99.27%,实现了PEMFC系统膜干、氢气供应故障的精准快速诊断。 展开更多
关键词 质子交换膜燃料电池 故障检测 数据挖掘 P-L双重特征提取 支持向量机 极限学习机
在线阅读 下载PDF
巨厚煤层分层开采覆岩导水裂隙带高度演化及其预测研究 被引量:2
8
作者 孟海伦 程香港 乔伟 《工矿自动化》 CSCD 北大核心 2024年第12期67-75,共9页
目前导水裂隙带发育高度的研究大多针对的是单一煤层开采导水裂隙带高度,而对于巨厚煤层开采覆岩导水裂隙带发育高度预测研究较少。基于新疆侏罗系煤田巨厚煤层地质条件,选取新疆准南煤田硫磺沟煤矿(9−15)08典型工作面参数,通过数值模... 目前导水裂隙带发育高度的研究大多针对的是单一煤层开采导水裂隙带高度,而对于巨厚煤层开采覆岩导水裂隙带发育高度预测研究较少。基于新疆侏罗系煤田巨厚煤层地质条件,选取新疆准南煤田硫磺沟煤矿(9−15)08典型工作面参数,通过数值模拟和分形几何理论分析,定量评价巨厚煤层在综放分层开采条件下覆岩裂隙场的发育特征和演化规律,并构建了基于粒子群优化支持向量机回归(PSO−SVR)的巨厚煤层分层开采导水裂隙带高度预测模型。研究结果表明:①巨厚煤层分层开采时,老顶范围内坚硬岩层和亚关键层呈铰接结构,整体上覆岩变形破坏呈拱式结构。②受采动影响,顶板覆岩破断垮落,横向裂隙不断发育生成,且垂向裂隙向上发育,导水裂隙带持续上升,分形维数快速上升。而随着工作面的持续推进,上覆岩层裂隙中横向裂隙被上覆岩层压实,裂隙开度降低,分形维数逐渐降低。③分层开采时裂隙分形维数总体呈现为升维、降维、稳定和波动4个阶段。④选用平均绝对误差(MAE)、平均偏差(MBE)和相关指数R2等指标对PSO−SVR模型进行了评估,其相关指数R^(2)>0.90,MAE<6.5 m,−0.5 m<MBE<0.5 m,表明建立的PSO−SVR模型能够用于分层综放开采导水裂隙带高度预测。⑤将9−15(08)工作面数据代入PSO−SVR模型中,预测值与实测值绝对误差为12.52 m,相对误差为4.86%,表明PSO−SVR能够有效、准确地进行巨厚煤层开采导水裂隙带高度预测。 展开更多
关键词 巨厚煤层 导水裂隙带高度 分层开采 分形维数 覆岩裂隙演化 粒子群优化支持向量机回归
在线阅读 下载PDF
基于WPT-ITTA-RELM/ELM/LSSVM模型的日径流预测研究 被引量:4
9
作者 董欣林 崔东文 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第4期16-24,共9页
为提高日径流预测精度,验证改进足球战术算法(ITTA)寻优正则化极限学习机(RELM)、极限学习机(ELM)、最小二乘支持向量机(LSSVM)超参数对日径流预测精度的影响,提出小波包分解(WPT)-ITTA-RELM/ELM/LSSVM时间序列预测模型,并通过德厚大型... 为提高日径流预测精度,验证改进足球战术算法(ITTA)寻优正则化极限学习机(RELM)、极限学习机(ELM)、最小二乘支持向量机(LSSVM)超参数对日径流预测精度的影响,提出小波包分解(WPT)-ITTA-RELM/ELM/LSSVM时间序列预测模型,并通过德厚大型水库入库日径流预测实例进行验证.首先,利用WPT分解处理日径流时序数据,以获得更具规律的子序列分量;其次,通过典型测试函数和RELM/ELM/LSSVM超参数寻优适应度函数对ITTA寻优能力进行检验,并与基本足球战术算法(TTA)、灰狼优化(GWO)算法、倭黑猩猩优化(BO)算法、黏菌算法(SMA)、鲸鱼优化算法(WOA)的优化结果作对比;最后,建立WPT-ITTA-RELM/ELM/LSSVM模型对实例日径流进行预测,并构建WPT-TTA/GWO/BO/SMA/WOA-RELM、WPT-TTA/GWO/BO/SMA/WOA-ELM、WPT-TTA/GWO/BO/SMA/WOA-LSSVM、WPT-RELM/ELM/LSSVM作对比分析模型.结果表明:对于高维和低维优化问题,ITTA寻优精度均优于TTA、GWO、BO、SMA、WOA,表明通过Levy飞行策略及平衡系数等的改进,可有效提高ITTA全局搜索性能和全局、局部平衡能力.WPT-ITTA-RELM、WPT-ITTA-ELM模型对实例日径流预测的平均绝对百分比误差(E_(MAP))分别为0.521%与0.604%,平均绝对误差(E MA)分别为0.024 m^(3)/s与0.025 m^(3)/s,纳什效率系数(E_(NS))均为0.9992,优于其他对比模型;其中WPT-ITTA-ELM模型运行时间较长,不利于大容量样本的预测研究.对于RELM/ELM超参数高维寻优,ITTA优化效果最好,SMA、TTA次之,GWO、BO、WOA优化效果较差;对于LSSVM超参数低维寻优,由于优化维度低、问题简单,ITTA等6种算法均具有较好的优化效果,但ITTA优化效果最好. 展开更多
关键词 日径流预测 极限学习机 最小二乘支持向量机 改进足球战术算法 小波包变换 超参数优化
在线阅读 下载PDF
基于机器学习的KRAS抑制剂活性预测模型研究
10
作者 杜克 荣丹琪 +2 位作者 卢瑞 张小雅 赵鸿萍 《中国药科大学学报》 CAS CSCD 北大核心 2024年第3期306-315,共10页
Kirsten大鼠肉瘤病毒癌基因同系物(Kirsten rat sarcoma viral oncogene homolog,KRAS)基因是最常见的突变癌基因之一,发现KRAS抑制剂对存在该基因突变的癌症患者具有潜在的治疗作用。本研究将机器学习应用于KRAS抑制剂的定量构效关系(q... Kirsten大鼠肉瘤病毒癌基因同系物(Kirsten rat sarcoma viral oncogene homolog,KRAS)基因是最常见的突变癌基因之一,发现KRAS抑制剂对存在该基因突变的癌症患者具有潜在的治疗作用。本研究将机器学习应用于KRAS抑制剂的定量构效关系(quantitative structure-activity relationship,QSAR)模型,从ChEMBL、BindingDB、PubChem 3个数据库中收集了1857条KRAS小分子抑制剂的IC50和SMILES(simplified molecular input line entry system),采用3种不同的特征筛选方式结合随机森林、支持向量机、极端梯度提升机3种机器学习模型,构建了9个不同的分类器。结果表明,SVM模型结合互信息筛选显示出最佳性能:AUC_(test)=0.912,ACC_(test)=0.859,F1_(test)=0.890,并且在外部验证集上也表现出良好的预测性能(AUC_(Ext)=0.944,Recall_(Ext)=0.856,FPR_(Ext)=0.111)。该研究为使用人工智能方法在天然产物数据库中进行KRAS抑制剂筛选提供了新的技术路线。 展开更多
关键词 KRAS抑制剂 互信息 主成分分析 随机森林 支持向量机 极端梯度提升机
在线阅读 下载PDF
神经网络极速学习方法研究 被引量:164
11
作者 邓万宇 郑庆华 +1 位作者 陈琳 许学斌 《计算机学报》 EI CSCD 北大核心 2010年第2期279-287,共9页
单隐藏层前馈神经网络(Single-hidden Layer Feedforward Neural Network,SLFN)已经在模式识别、自动控制及数据挖掘等领域取得了广泛的应用,但传统学习方法的速度远远不能满足实际的需要,成为制约其发展的主要瓶颈.产生这种情况的两个... 单隐藏层前馈神经网络(Single-hidden Layer Feedforward Neural Network,SLFN)已经在模式识别、自动控制及数据挖掘等领域取得了广泛的应用,但传统学习方法的速度远远不能满足实际的需要,成为制约其发展的主要瓶颈.产生这种情况的两个主要原因是:(1)传统的误差反向传播方法(Back Propagation,BP)主要基于梯度下降的思想,需要多次迭代;(2)网络的所有参数都需要在训练过程中迭代确定.因此算法的计算量和搜索空间很大.针对以上问题,借鉴ELM的一次学习思想并基于结构风险最小化理论提出一种快速学习方法(RELM),避免了多次迭代和局部最小值,具有良好的泛化性、鲁棒性与可控性.实验表明RELM综合性能优于ELM、BP和SVM. 展开更多
关键词 极速学习机 正则极速学习机 支持向量机 结构风险 神经网络 最小二乘
在线阅读 下载PDF
基于介电频谱技术的甜瓜品种无损检测 被引量:15
12
作者 王转卫 赵春江 +2 位作者 商亮 孔繁荣 翁小凤 《农业工程学报》 EI CAS CSCD 北大核心 2017年第9期290-295,共6页
研究应用介电频谱技术实现对甜瓜的无损、快速及准确分类。以陕西杨凌某4家大棚外形相似的"红阎良"、"新早蜜"、"208"及"玛瑙"等4类成熟甜瓜为研究对象,采用矢量网络分析仪测量共246个样品在20... 研究应用介电频谱技术实现对甜瓜的无损、快速及准确分类。以陕西杨凌某4家大棚外形相似的"红阎良"、"新早蜜"、"208"及"玛瑙"等4类成熟甜瓜为研究对象,采用矢量网络分析仪测量共246个样品在20 MHz^4 500 MHz的介电频谱。用Kennard-Stone方法划分校正集与验证集,分别建立支持向量机(support vector machine,SVM)和极限学习机(extremelearning machine,ELM)种类判别模型,并比较全频谱(full frequencies,FF)、连续投影算法(successive projectionalgorithm,SPA)和主成分分析(principal componentanalysis,PCA)等不同预处理方法对模型精度的影响。结果表明:1)所建6个判别模型验证集总正确率均大于96%,均可用于甜瓜种类的判别。2)对比3种预处理方法,FF完好地保留了样品的原始信息,2种判别模型的验证集总正确率都达到了100%,但由于存在干扰信息导致模型稳定性不好;PCA方法选择能代表原谱信息99.99%的前10个主成分信息用来建模,能有效简化模型,但验证集每个模型均有误判,两种判别模型总正确率分别为96.72%及98.36%;SPA从202个变量中提取17个特征变量参与建模,验证模型整体稳定性较其他两种好,总正确率分别达到96.72%和100%。3)综合考虑判别模型的验证集总正确率及模型稳定性,SPA-ELM模型判别效果最好,验证集总正确率达到100%,更适用于基于介电频谱的甜瓜种类判别。因此,基于甜瓜的介电频谱,通过支持向量机和极限学习机方法可以成功区分甜瓜种类,为甜瓜的无损检测及分类研究提供了一种新方法。 展开更多
关键词 介电特性 支持向量机 模型 甜瓜 极限学习机 分类
在线阅读 下载PDF
高光谱与机器学习相结合的大白菜种子品种鉴别研究 被引量:13
13
作者 程术希 孔汶汶 +2 位作者 张初 刘飞 何勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第9期2519-2522,共4页
提出了基于高光谱信息的大白菜种子品种分类识别方法。利用近红外高光谱图像采集系统采集了八种共239个大白菜种子样本;提取15pixel×15pixel感兴趣区域平均光谱反射率信息作为样本信息;采用多元散射校正预处理方法对光谱进行消噪;... 提出了基于高光谱信息的大白菜种子品种分类识别方法。利用近红外高光谱图像采集系统采集了八种共239个大白菜种子样本;提取15pixel×15pixel感兴趣区域平均光谱反射率信息作为样本信息;采用多元散射校正预处理方法对光谱进行消噪;验证了Ada-Boost算法、极限学习机(extreme learning machine,ELM)、随机森林(random forest,RF)和支持向量机(support vector machine,SVM)四种分类算法的分类判别效果。为了简化输入变量,通过载荷系数分析选取了10个大白菜种子品种分类判别的特征波长。实验结果表明,四种分类算法基于全波段的分类识别对81个预测样本的正确区分率均超过90%,最优的分类判别模型为ELM和RF,识别正确率达到了100%;以10个特征波长的分类判别精度略有下降,但输入变量大幅减少,提高了信息处理效率,其中最优分类判别模型为EW-ELM模型,判别正确率为100%,因此以载荷系数选取的特征波长是有效的。利用高光谱结合机器学习对大白菜种子品种进行快速、无损分类识别是可行的,为大白菜种子批量化在线检测提供了一种新的方法。 展开更多
关键词 高光谱 Ada-Boost算法 极限学习机 随机森林 支持向量机
在线阅读 下载PDF
基于极限学习机的GF-2影像分类 被引量:14
14
作者 王明常 张馨月 +3 位作者 张旭晴 王凤艳 牛雪峰 王红 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2018年第2期373-378,共6页
遥感图像分类是提取图像有效信息过程中重要的一部分,为了探寻最优的分类方法,许多机器学习算法逐步应用于遥感分类中。极限学习机(extreme learning machine,ELM)以其高效、快速和良好的泛化性能在模式识别领域得到广泛应用。本文采用... 遥感图像分类是提取图像有效信息过程中重要的一部分,为了探寻最优的分类方法,许多机器学习算法逐步应用于遥感分类中。极限学习机(extreme learning machine,ELM)以其高效、快速和良好的泛化性能在模式识别领域得到广泛应用。本文采用训练速度快、运算量小的极限学习机算法与支持向量机(support vector machines,SVM)算法和最大似然法进行分类对比,对高分辨率遥感图像进行分类,分析极限学习机算法对于遥感图像分类的准确度等性能。选取吉林省长春市部分区域的GF-2遥感数据,将融合后的影像设置为原始数据,利用3种方法进行分类。研究结果表明,极限学习机算法分类图像总体分类精度达到85%以上,kappa系数达到0.718,与其他分类方法相比分类准确度较高,且极限学习机运行时间比支持向量机运行时间约短2 480s,约为支持向量机运行时间的1/8,因此具有良好的性能和实用价值。 展开更多
关键词 极限学习机 遥感图像分类 GF-2影像 监督分类 支持向量机
在线阅读 下载PDF
基于ELM和近似熵的脑电信号检测方法 被引量:36
15
作者 袁琦 周卫东 +1 位作者 李淑芳 蔡冬梅 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第3期514-519,共6页
脑电癫痫波的自动检测与分类对癫痫病情的诊断具有重要意义。提出了一种基于极端学习机(extreme learning ma-chine,ELM)和近似熵的脑电信号检测方法。首先,计算脑电信号的近似熵作为非线性特征,并与利用小波变换技术提取的线性特征波... 脑电癫痫波的自动检测与分类对癫痫病情的诊断具有重要意义。提出了一种基于极端学习机(extreme learning ma-chine,ELM)和近似熵的脑电信号检测方法。首先,计算脑电信号的近似熵作为非线性特征,并与利用小波变换技术提取的线性特征波动指数相结合,组成特征向量,然后将特征向量送入单隐层前馈神经网络,采用ELM学习算法训练网络。实验表明,与BP(backpropagation)和SVM(support vector machine)算法相比,ELM在训练时间和识别精度两方面性能最佳,对用于实验的脑电数据检测识别率达到98%以上。 展开更多
关键词 癫痫脑电 近似熵 极端学习机 反向传播算法 支持向量机
在线阅读 下载PDF
基于改进极限学习机的短期电力负荷预测方法 被引量:54
16
作者 毛力 王运涛 +1 位作者 刘兴阳 李朝锋 《电力系统保护与控制》 EI CSCD 北大核心 2012年第20期140-144,共5页
为了提高电力系统短期负荷预测精度,提出一种基于改进极限学习机(MELM)的短期电力负荷预测模型。引入基于结构风险最小化理论,并结合最小二乘向量机回归学习方法,以克服传统极限学习机(ELM)在短期负荷预测中存在的过拟合问题。某地区用... 为了提高电力系统短期负荷预测精度,提出一种基于改进极限学习机(MELM)的短期电力负荷预测模型。引入基于结构风险最小化理论,并结合最小二乘向量机回归学习方法,以克服传统极限学习机(ELM)在短期负荷预测中存在的过拟合问题。某地区用电负荷预测结果表明,改进模型的泛化性与预测精度均优于传统ELM和OS-ELM模型,可为短期电力负荷预测提供有效依据,具有一定的实用性。 展开更多
关键词 短期负荷预测 极限学习机 结构风险 最小二乘支持向量机
在线阅读 下载PDF
极限学习机在岩性识别中的应用 被引量:34
17
作者 蔡磊 程国建 潘华贤 《计算机工程与设计》 CSCD 北大核心 2010年第9期2010-2012,共3页
基于传统支持向量机(SVM)训练速度慢、参数选择难等问题,提出了基于极限学习机(ELM)的岩性识别。该算法是一种新的单隐层前馈神经网络(SLFNs)学习算法,不但可以简化参数选择过程,而且可以提高网络的训练速度。在确定了最优参数的基础上... 基于传统支持向量机(SVM)训练速度慢、参数选择难等问题,提出了基于极限学习机(ELM)的岩性识别。该算法是一种新的单隐层前馈神经网络(SLFNs)学习算法,不但可以简化参数选择过程,而且可以提高网络的训练速度。在确定了最优参数的基础上,建立了ELM的岩性分类模型,并且将ELM的分类结果与SVM进行对比。实验结果表明,ELM以较少的神经元个数获得与SVM相当的分类正确率,并且ELM参数选择比SVM简便,有效降低了训练速度,表明了ELM应用于岩性识别的可行性和算法的有效性。 展开更多
关键词 机器学习 极限学习机 前馈神经网络 岩性识别 支持向量机
在线阅读 下载PDF
基于极限学习机的采煤机功率预测算法研究 被引量:14
18
作者 丁华 常琦 +1 位作者 杨兆建 刘建成 《煤炭学报》 EI CAS CSCD 北大核心 2016年第3期794-800,共7页
为减少对领域专家的过分依赖,实现企业专家经验知识的继承,面向采煤机方案设计中总体技术参数的确定过程,结合采煤机条件属性与决策属性间的映射关系,提出了基于极限学习机的采煤机功率预测模型。采用遗传算法选定最佳隐层神经元个数,... 为减少对领域专家的过分依赖,实现企业专家经验知识的继承,面向采煤机方案设计中总体技术参数的确定过程,结合采煤机条件属性与决策属性间的映射关系,提出了基于极限学习机的采煤机功率预测模型。采用遗传算法选定最佳隐层神经元个数,利用递进方式比选确定激励函数,随机产生输入权值及隐元偏置,由此计算隐层节点输出矩阵、隐层与输出层连接权重,进而完成建模与优化。模型可根据用户输入的不同原始设计条件输出采煤机功率的预测值。选用某煤机企业的实例数据进行算例分析,将其与基于支持向量机回归预测模型进行对比,实验结果表明,ELM模型可实现600 ms内完成单次功率预测,预测值与真实值平均相对误差在2.5%以内。其预测精度优于SVM模型,且在学习速度方面优势明显,推理效率显著提高。 展开更多
关键词 采煤机 功率预测 极限学习机 支持向量机 模型推理
在线阅读 下载PDF
基于P300和极限学习机的脑电测谎研究 被引量:7
19
作者 高军峰 张文佳 +3 位作者 杨勇 胡佳佳 陶春毅 官金安 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第2期301-305,共5页
极限学习机基于一种典型的单隐层前馈神经网络(SLFNs),其有效性在模式识别很多领域得到证实。该文针对当前的测谎方法的准确率不够高及训练时间较长的缺点,将ELM算法应用到测谎研究领域,作为分类器,对说谎者和诚实者的两类脑电信号进行... 极限学习机基于一种典型的单隐层前馈神经网络(SLFNs),其有效性在模式识别很多领域得到证实。该文针对当前的测谎方法的准确率不够高及训练时间较长的缺点,将ELM算法应用到测谎研究领域,作为分类器,对说谎者和诚实者的两类脑电信号进行分类识别,并将实验结果和三类典型的分类器:支持向量机(SVM)、人工神经网络(ANN)和线性分类器(FDA)的分类结果进行比较。实验结果表明,该方法不仅获得最高的训练和测试准确率,而且训练时间也大为缩短,证明了该方法的测谎有效性。 展开更多
关键词 脑电 极限学习机 测谎 神经网络 P300 支持向量机
在线阅读 下载PDF
航空发动机传感器故障与部件故障诊断技术 被引量:19
20
作者 李业波 李秋红 +1 位作者 黄向华 赵永平 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第9期1174-1180,共7页
结合局部学习思想与集成学习技术,提出了一种基于支持向量机-极端学习机-卡尔曼滤波器(SVM-ELM-KF,Support Vector Machine-Extreme Learning Machine-Kalman Filter)的航空发动机传感器故障与突发性部件故障诊断的方法.将改进的迭代约... 结合局部学习思想与集成学习技术,提出了一种基于支持向量机-极端学习机-卡尔曼滤波器(SVM-ELM-KF,Support Vector Machine-Extreme Learning Machine-Kalman Filter)的航空发动机传感器故障与突发性部件故障诊断的方法.将改进的迭代约简最小二乘支持向量回归机训练技术推广到分类机中,用于区分传感器故障与部件故障,使得该分类机具有一定的稀疏性.对于传感器故障,利用ELM分类机对故障进行定位.对于部件故障,利用改进的卡尔曼滤波器对发动机各部件的健康参数进行估计,从而对部件故障进行定位.仿真结果表明,提出的故障诊断方法能够准确地区分传感器故障和部件故障,实现故障的有效定位,验证了方法的可行性. 展开更多
关键词 航空发动机 传感器故障 部件故障 支持向量机 极端学习机 卡尔曼滤 波器
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部