期刊文献+
共找到234篇文章
< 1 2 12 >
每页显示 20 50 100
构建并外部验证XGBoost模型鉴别乳腺非肿块病变良恶性 被引量:2
1
作者 杨文 杨蔚 +5 位作者 周晓平 杨妍 张宁妹 尹清云 张朝林 刘召弟 《磁共振成像》 北大核心 2025年第1期118-126,145,共10页
目的本研究旨在构建一个基于临床和影像学特征的极端梯度提升(extreme gradient boosting,XGBoost)模型,以鉴别乳腺非肿块病变的良恶性。材料与方法收集2018年1月至2024年7月2个机构,2种乳腺X线设备检查的有病理结果的首诊乳腺非肿块病... 目的本研究旨在构建一个基于临床和影像学特征的极端梯度提升(extreme gradient boosting,XGBoost)模型,以鉴别乳腺非肿块病变的良恶性。材料与方法收集2018年1月至2024年7月2个机构,2种乳腺X线设备检查的有病理结果的首诊乳腺非肿块病变480个。患者被分为建模组[n=310,数字乳腺X线摄影(digital mammography,DM)检查]、内部验证组(n=108,DM检查),和外部验证组[n=62,数字乳腺体层合成摄影(digital breast tomosynthesis,DBT)检查]。记录患者术前乳腺X线(DM或DBT),MRI以及临床特征。采用XGBoost算法和多因素逻辑回归分析,分别构建XGBoost模型和逻辑回归(logistic regression,LR)模型。使用受试者工作特征(receiver operating characteristic,ROC)曲线评估模型的诊断效能。结果在建模组中,患者以7∶3随机分为训练集(n=217)和测试集(n=93)。训练集、测试集、训练集的内部验证组及训练集的外部验证组中,恶性非肿块病灶分别为159(73%)、58(62%)、73(68%)和43(69%)。XGBoost模型的诊断效能明显优于LR模型,在独立的训练集、测试集、训练集的内部验证组及训练集的外部验证组中均表现出良好的诊断效能,曲线下面积(area under the curve,AUC)在0.884~0.913之间。XGBoost模型在四个队列中也表现出良好的校准能力和临床净获益。结论XGBoost模型能够准确鉴别乳腺非肿块病变的良恶性,具有推广应用的潜力。 展开更多
关键词 非肿块强化 乳腺癌 极端梯度提升 机器学习 磁共振成像 乳腺X线摄影
在线阅读 下载PDF
融合XGBoost和SVR的滑坡位移预测 被引量:1
2
作者 王惠琴 梁啸 +4 位作者 何永强 李晓娟 张建良 郭瑞丽 刘宾灿 《湖南大学学报(自然科学版)》 北大核心 2025年第4期149-158,共10页
利用极端梯度提升与支持向量回归,同时结合猎人猎物优化算法的优势,提出了一种融合极端梯度提升和支持向量回归的滑坡位移预测模型.首先采用极端梯度提升(extreme gradient boosting,XGBoost)进行滑坡位移初步预测,进一步利用猎人猎物... 利用极端梯度提升与支持向量回归,同时结合猎人猎物优化算法的优势,提出了一种融合极端梯度提升和支持向量回归的滑坡位移预测模型.首先采用极端梯度提升(extreme gradient boosting,XGBoost)进行滑坡位移初步预测,进一步利用猎人猎物优化算法(hunter-prey optimizer,HPO)优化支持向量回归(support vector regression,SVR)的超参数而构建了一种组合预测模型(HPO-SVR)以修正XGBoost的预测结果.两组滑坡位移实测数据表明:HPO算法通过不断更新猎人与猎物位置的动态寻优策略,获得了更加合理的SVR的超参数.相对于XGBoost、SVR,以及其与粒子群优化算法、遗传算法和HPO的组合预测模型而言,XGBoost-HPO-SVR组合模型在阳屲山滑坡和脱甲山滑坡位移预测中取得了良好的效果,其均方根误差和平均绝对误差分别为3.505和1.357,0.550和0.538. 展开更多
关键词 极端梯度提升 支持向量回归 猎人猎物优化算法 滑坡位移预测
在线阅读 下载PDF
基于AE-Xgboost的室内火灾温度变化预测模型
3
作者 宋岩升 肖广 +1 位作者 王浩然 董龙威 《沈阳建筑大学学报(自然科学版)》 北大核心 2025年第5期695-704,共10页
使用机器学习算法构建一个预测模型,准确地预测室内火灾中温度的变化,保障个人生命和财产安全。采用AE对合成的温度数据进行降维,然后利用所得参数来构建Xgboost模型(AE-Xgboost),最后通过一个火灾数值模拟案例和一系列火灾测试的数据验... 使用机器学习算法构建一个预测模型,准确地预测室内火灾中温度的变化,保障个人生命和财产安全。采用AE对合成的温度数据进行降维,然后利用所得参数来构建Xgboost模型(AE-Xgboost),最后通过一个火灾数值模拟案例和一系列火灾测试的数据验证AE-Xgboost的预测能力。AE-Xgboost与其他7个预测模型相比,R^(2)具有最大值0.999,均方差MSE具有最小值4.93×10^(-5);AE-Xgboost对11组验证数据进行预测后,所得R^(2)值均高于0.96。AE-Xgboost在预测室内火灾中温度变化方面具有较高的预测精度和较强的泛化能力,且适用于t 2型和缓慢增长类型的火灾。 展开更多
关键词 室内火灾温度 自编码器 极限梯度提升 预测模型
在线阅读 下载PDF
基于BO-XGBoost模型的衢州市浅层滑坡易发性评价
4
作者 王凯 邬礼扬 +3 位作者 殷坤龙 曾韬睿 谢小旭 龚泉冰 《安全与环境工程》 北大核心 2025年第3期197-209,共13页
机器学习模型作为评估滑坡易发性的先进工具,其精度的提高是获得高质量易发性区划图的核心。为优化机器学习模型,克服传统模型在预测浅层滑坡方面的不足,提出了一种基于贝叶斯优化(Bayesian optimization,BO)的极端梯度提升树(extreme g... 机器学习模型作为评估滑坡易发性的先进工具,其精度的提高是获得高质量易发性区划图的核心。为优化机器学习模型,克服传统模型在预测浅层滑坡方面的不足,提出了一种基于贝叶斯优化(Bayesian optimization,BO)的极端梯度提升树(extreme gradient boosting,XGBoost)模型,用以评价衢州市的浅层滑坡易发性。首先,基于衢州市682处浅层滑坡的基础数据,选取坡度、坡向等10个指标构建指标因子体系;然后构建XGBoost模型,使用贝叶斯算法进行超参数优化;最后使用受试者工作特征(receiver operating characteristic,ROC)曲线以及统计方式进行精度分析,并与其他的机器学习模型进行对比。结果表明:①BO-XGBoost模型(AUC=0.874)预测精度最高,比XGBoost模型性能提升了4.17%,且根据浅层滑坡在各易发性等级的分布情况,BO-XGBoost模型在极高易发区中浅层滑坡数占比最高,为36.80%,滑坡比率最高,为3.92;②衢州市浅层滑坡极高和高易发区主要分布于北部、南部和中部山区的道路和水系沿线区域;③土地利用类型为草地、居民点距离小于400 m、道路距离与水系距离小于150 m是衢州市浅层滑坡发育的主要影响因素。研究提出的模型显著优于传统方法,提高了滑坡易发性评价的准确性,为东部沿海山区的浅层滑坡易发性评价提供了一种新颖的技术方案。 展开更多
关键词 浅层滑坡 易发性评价 极端梯度提升树(XGboost) 贝叶斯优化(BO)
在线阅读 下载PDF
利用XGBoost模型查明土地利用格局对行人交通事故严重程度的非线性影响 被引量:1
5
作者 刘琪琪 陈春 匡新晖 《科学技术与工程》 北大核心 2025年第3期1253-1261,共9页
土地利用与交通安全是城市地理和交通运输领域共同关注的热点,但目前关于土地利用对行人交通事故的影响研究多纳入建成环境统一框架,并多采用土地利用混合度或土地利用类型占比来衡量,缺乏对土地利用类型的细化研究,难以有效指导设计实... 土地利用与交通安全是城市地理和交通运输领域共同关注的热点,但目前关于土地利用对行人交通事故的影响研究多纳入建成环境统一框架,并多采用土地利用混合度或土地利用类型占比来衡量,缺乏对土地利用类型的细化研究,难以有效指导设计实践。以重庆市渝中区为例,基于兴趣点(point of interest,POI)数据对土地利用类型进行精细刻画,应用极致梯度提升树(extreme gradient boosting,XGBoost)模型,探究土地利用类型以及行人、道路条件、道路环境等对行人交通事故严重程度影响的非线性关系。研究发现:①土地利用类型对行人交通事故严重程度有重要作用,其中影响较大的分别是医院、住宅和教育用地,事故点缓冲区300 m内存在医院、居民小区以及教育用地对行人交通事故严重程度有降低作用;②弯道和弯坡道的道路线形处是严重行人交通事故的高发区;路段进出口处、窄路等路口路段处对行人交通事故严重程度有降低作用。研究结论可为精细化的土地利用规划与治理以降低行人交通事故严重程度提供一定的政策启示。 展开更多
关键词 土地利用 建成环境 极致梯度提升决策树(XGboost) 交通安全
在线阅读 下载PDF
基于融合XGBoost的变电工程造价数据预测算法 被引量:1
6
作者 周波 刘云 +2 位作者 李维嘉 亓彦珣 王立功 《沈阳工业大学学报》 北大核心 2025年第3期317-323,共7页
【目的】传统电网变电工程造价预测方法通常依赖单一影响因子或线性假设模型,难以全面捕捉多因子间复杂的非线性关系,预测精度不足。此外,现有方法在处理高维度分类变量时面临维度爆炸或信息损失等问题,尤其在小样本数据场景下容易过拟... 【目的】传统电网变电工程造价预测方法通常依赖单一影响因子或线性假设模型,难以全面捕捉多因子间复杂的非线性关系,预测精度不足。此外,现有方法在处理高维度分类变量时面临维度爆炸或信息损失等问题,尤其在小样本数据场景下容易过拟合。因此,本文构建了一种能有效融合多源影响因子、适应非线性关系且在小样本数据中表现稳健的变电工程造价预测模型,为电网企业的投资决策提供更精准的技术支持。【方法】提出了一种基于均值编码(ME)并融合极端梯度提升框架(XGBoost)的变电工程造价预测模型(ME-XGB)。首先,从设备和材料、施工工艺、施工规模、地理环境及设计标准等多维度中提取13个关键影响因子,涵盖分类变量与连续变量。针对分类变量与造价间的非线性关系,利用均值编码进行特征工程处理,通过计算类别内目标变量即单位容量造价的均值并结合平滑因子,将分类变量转化为连续特征,既保留类别信息又避免维度爆炸。其次,利用XGBoost构建预测模型,通过集成多棵决策树逐步修正残差,并引入正则化项和超参数调优,提升模型泛化能力。实验选取某电网公司200个变电工程样本,随机划分为训练集(80%)与测试集(20%),以平均绝对误差(M_(AE))和拟合优度(R^(2))作为评价指标,与MK-TESM、BP神经网络和XGBoost模型的性能进行对比分析。【结果】ME-XGB模型在测试集上的预测精度显著优于对比模型。其M_(AE)中位数与均值分别为5和6.875,较MK-TESM、BP神经网络和XGBoost模型均有所降低。同时,ME-XGB模型的R^(2)值达到0.8579,远高于对比模型,表明该模型对数据变动的解释能力更强。此外,箱线图分析结果显示,ME-XGB模型的预测误差分布范围最窄,验证了该模型的稳定性更强。超参数调优结果表明,XGBoost模型的树深度和学习率等超参数设置有效平衡了模型复杂度与过拟合风险。【结论】ME-XGB模型通过均值编码解决了分类变量非线性表达与维度控制问题,结合XGBoost模型的集成学习能力,显著提升了小样本场景下的预测性能。ME-XGB模型在平均绝对误差、拟合优度及误差稳定性方面均优于对比模型,可为电网企业提供更可靠的造价预测。未来研究可进一步探索动态影响因子的建模,并结合迁移学习拓展模型在跨区域工程中的应用。 展开更多
关键词 变电工程 造价预测 非线性 影响因子 极端梯度提升 均值编码 融合框架 特征工程
在线阅读 下载PDF
基于IRMO-XGBoost的地表沉陷预计模型研究
7
作者 王军胜 王宏涛 +4 位作者 张文 白宇 金亮星 高志勇 刘娉婷 《安全与环境学报》 北大核心 2025年第9期3504-3513,共10页
煤矿地表沉陷严重威胁矿区生态环境及周边基础设施安全,因此精准预计地表沉陷意义重大。但地表沉陷的预计复杂,概率积分法预计地表沉陷准确性较低。提出了一种基于改进的径向移动(Improved Radial Movement Optimization,IRMO)算法优化... 煤矿地表沉陷严重威胁矿区生态环境及周边基础设施安全,因此精准预计地表沉陷意义重大。但地表沉陷的预计复杂,概率积分法预计地表沉陷准确性较低。提出了一种基于改进的径向移动(Improved Radial Movement Optimization,IRMO)算法优化极致梯度提升(eXtreme Gradient Boosting,XGBoost)算法的地表沉陷预计模型,通过IRMO算法选择XGBoost算法中的学习率、正则化等超参数的最优值,提高了地表沉陷预计精度,并与遗传算法(Genetic Algorithm,GA)优化的XGBoost算法、XGBoost算法的预测结果进行了对比分析,IRMO-XGBoost模型的均方根误差R_(MSE)(0.156)和平均绝对误差M_(AE)(0.126)更低,决定系数R^(2)(0.970)更高。运用IRMO-XGBoost模型对建北煤矿4^(-2)煤305工作面的地表沉陷值进行了预测,结果表明,IRMO-XGBoost模型预测精度明显优于XGBoost算法。最后用Shapley解释(SHapley Additive exPlanations,SHAP)方法量化模型的输入特征对地表沉陷预测的贡献。基于IRMO-XGBoost构建的地表沉陷预计模型精度高,可以极大地帮助矿区掌握地表沉陷对地表环境的破坏程度,为矿区生态环境的保护管理和安全生产措施的制定提供超前预测。 展开更多
关键词 安全工程 地表沉陷预计 改进的径向移动算法 极致梯度提升算法 概率积分法
在线阅读 下载PDF
XGBoost联合人工神经网络预测三阴性乳腺癌新辅助化疗后的病理完全缓解
8
作者 陈志强 杨蔚 +4 位作者 周晓平 杨妍 张宁妹 尹清云 张朝林 《中国医学计算机成像杂志》 北大核心 2025年第2期193-203,共11页
目的:探讨极限梯度提升(XGBoost)联合人工神经网络(ANN)构建模型预测三阴性乳腺癌(TNBC)新辅助化疗(NAC)后病理完全缓解(pCR)的价值。方法:回顾性收集我院2018年1月—2022年12月首诊为TNBC接受NAC并手术的患者治疗前的临床、血清、病理... 目的:探讨极限梯度提升(XGBoost)联合人工神经网络(ANN)构建模型预测三阴性乳腺癌(TNBC)新辅助化疗(NAC)后病理完全缓解(pCR)的价值。方法:回顾性收集我院2018年1月—2022年12月首诊为TNBC接受NAC并手术的患者治疗前的临床、血清、病理、影像、免疫组化指标以及NAC前后对侧正常乳腺腺体背景实质强化(BPE)特征,应用XGBoost联合grid search降低维度筛选出与pCR相关的重要特征子集,并构建ANN模型。通过受试者工作特征(ROC)曲线评估模型的诊断效能。前瞻性收集我院2023年1月—2024年6月符合条件的患者进行验证。结果:共收集163个病灶,pCR 63个。经XGBoost及greed search筛选出8个重要特征子集,依次为较高的异质性表观弥散系数(ADC)值、程序性细胞死亡配体‑1(PD‑L1)阴性、腋窝淋巴结阴性、较高的信号增强比(SER)值、雄激素受体(AR)阳性、Ki‑67指数低表达、NAC前BPE少许/轻度强化、血小板/淋巴细胞比值高,进一步构建ANN模型。该模型在训练集,测试集和验证组中均表现出优秀的诊断效能[ROC曲线下面积(AUC)分别为0.935、0.891、0.916]、校准能力及较高的临床净收益。结论:XGBoost联合ANN构建的模型能够预测TNBC患者经NAC后的pCR,为临床诊疗提供依据。 展开更多
关键词 三阴性乳腺癌 新辅助化疗 病理完全缓解 极限梯度提升 人工神经网络
在线阅读 下载PDF
基于ICOA-XGBoost的光伏阵列复合故障诊断研究
9
作者 张子洵 魏业文 +2 位作者 张轲钦 方豪 吴先用 《太阳能学报》 北大核心 2025年第5期251-259,共9页
为提高光伏阵列复合故障诊断的准确率,提出一种基于改进长鼻浣熊算法(ICOA)优化极端梯度提升(XGBoost)的故障诊断方法。首先,通过分析光伏阵列在不同故障状态下的输出特性,构建一个9维故障特征向量作为模型的输入变量。然后,将结合改进C... 为提高光伏阵列复合故障诊断的准确率,提出一种基于改进长鼻浣熊算法(ICOA)优化极端梯度提升(XGBoost)的故障诊断方法。首先,通过分析光伏阵列在不同故障状态下的输出特性,构建一个9维故障特征向量作为模型的输入变量。然后,将结合改进Circle混沌映射、Levy飞行和t分布随机扰动的ICOA算法与麻雀搜索算法(SSA)、鲸鱼优化算法(WOA)和长鼻浣熊算法(COA)相比较,其在寻优能力、稳定性和收敛速度方面展现出优越性。随后,利用改进的ICOA算法优化XGBoost模型,有效解决了模型初始化参数的设置问题。实验结果显示,结合9维故障特征向量的ICOA-XGBoost模型在故障诊断精度上达到97.23%,优于其他对比模型,证实了所提方法的可行性和有效性。 展开更多
关键词 光伏阵列 故障诊断 改进长鼻浣熊算法 极端梯度提升
在线阅读 下载PDF
基于CEEMDAN与NRBO-XGBoost的含光伏配电网漏电故障辨识
10
作者 刘晗 刘金东 +4 位作者 李贺 李彦立 于起媛 赵远 耿亚男 《中国电力》 北大核心 2025年第9期23-32,共10页
针对在含光伏电源的配电网中,现有剩余电流保护装置难以实现漏电故障的准确识别,存在误动、拒动的问题,提出一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与... 针对在含光伏电源的配电网中,现有剩余电流保护装置难以实现漏电故障的准确识别,存在误动、拒动的问题,提出一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与牛顿拉夫逊优化算法(Newton-Raphson-based optimizer,NRBO)优化梯度提升决策树(eXtreme Gradient Boosting,XGBoost)的含光伏配电网漏电故障辨识模型。首先,采用CEEMDAN对含光伏配电网的漏电信号进行分解;然后,提取分解后各模态分量的能量熵构建漏电故障特征集;最后,将能量熵特征输入到NRBO-XGBoost识别模型,实现对含光伏配电网不同漏电状态的辨识。通过仿真数据对所提方法进行验证,结果表明:与其他模型相比,所提方法具有更高的辨识精度。 展开更多
关键词 光伏电源 配电网 牛顿拉夫逊法 梯度提升决策树 漏电故障识别
在线阅读 下载PDF
基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型
11
作者 师国东 胡明茂 +3 位作者 宫爱红 龚青山 郭庆贺 谭浩 《计算机集成制造系统》 北大核心 2025年第9期3467-3484,共18页
为有效预测车辆油耗,提高燃油经济性,促进节能减排,提出一种基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型。该模型首先采用极端梯度提升树(XGBoost)算法提取车辆油耗特征,以优化模型的输入变量,提高模型的泛化性和鲁棒性。然后,利用... 为有效预测车辆油耗,提高燃油经济性,促进节能减排,提出一种基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型。该模型首先采用极端梯度提升树(XGBoost)算法提取车辆油耗特征,以优化模型的输入变量,提高模型的泛化性和鲁棒性。然后,利用多策略改进的鲸鱼优化算法(MSIWOA)对长短期记忆神经网络(LSTM)中的超参数进行自适应寻优,并将优化后的超参数代入LSTM中对车辆油耗进行建模预测。结合实际车辆油耗算例进行对比实验,结果表明,相对于其他对比模型,XGBoost-MSIWOA-LSTM预测模型预测精度更高,对降低车辆油耗具有一定的指导意义。 展开更多
关键词 油耗预测 极端梯度提升树 多策略改进的鲸鱼优化算法 长短期记忆神经网络 自适应寻优
在线阅读 下载PDF
基于RF-XGBoost算法的无人机多回合攻防博弈决策
12
作者 邹世培 王玉惠 刘鸿睿 《系统工程与电子技术》 北大核心 2025年第2期518-526,共9页
为解决不平衡空战数据集下的无人机多回合博弈对抗问题,提出一种随机森林-极限梯度提升(random forest-eXtreme gradient boosting, RF-XGBoost)算法以进行攻防博弈决策研究。通过分析红蓝双方的运动状态和空战信息,建立支付矩阵模型,... 为解决不平衡空战数据集下的无人机多回合博弈对抗问题,提出一种随机森林-极限梯度提升(random forest-eXtreme gradient boosting, RF-XGBoost)算法以进行攻防博弈决策研究。通过分析红蓝双方的运动状态和空战信息,建立支付矩阵模型,利用线性归纳法求解当前博弈纳什均衡解和期望收益,以蓝方最终获胜作为博弈对抗是否停止的判断条件。在博弈对抗过程中,首先基于随机森林(random forest, RF)算法对空战数据集进行特征降维以提高空战决策的实时性,然后提出改进的XGBoost算法来处理不平衡数据集,将其用于确定最优机动动作以提高机动决策准确率和提升蓝方对抗态势,并得到下一回合的红蓝空战信息;之后,根据下一回合的支付矩阵模型重新计算纳什均衡解和期望收益,直至蓝方获胜;最后,通过仿真验证所提算法的可行性和有效性。 展开更多
关键词 无人机 随机森林 极限梯度提升 多回合博弈
在线阅读 下载PDF
融合XGBoost和逻辑回归算法的电信客户流失预测模型
13
作者 吕宁 罗倩 《现代电子技术》 北大核心 2025年第11期136-143,共8页
为应对大规模、高维度且分布不均衡的企业数据环境下客户流失预测难题,文中提出一种融合极端梯度提升树与逻辑回归(XG-LR)的集成学习算法。该方法利用XGBoost算法构建决策树集成,将样本在树结构中的叶节点映射为新特征并输入LR模型,实... 为应对大规模、高维度且分布不均衡的企业数据环境下客户流失预测难题,文中提出一种融合极端梯度提升树与逻辑回归(XG-LR)的集成学习算法。该方法利用XGBoost算法构建决策树集成,将样本在树结构中的叶节点映射为新特征并输入LR模型,实现树模型非线性特征提取能力与LR模型解释性优势的有效结合。实验结果表明,在Teclo电信流失数据集上,XG-LR算法的预测精确率达到94.55%,较传统统计学习方法有显著提升。该模型可为企业客户关系管理提供高精度的流失预警工具,支持数据驱动的客户价值评估与营销策略优化。 展开更多
关键词 客户流失预测 统计学习模型 极端梯度提升树 逻辑回归 特征转换 数据平衡 特征提取
在线阅读 下载PDF
基于XGBoost的气液两相流流型超声识别方法
14
作者 苏茜 白凡 +1 位作者 刘振兴 刘彰 《化工进展》 北大核心 2025年第4期1786-1793,共8页
气液两相流现象广泛存在于石油开采与运输、能源化工、航空航天等诸多领域。针对气液两相流流型识别问题,基于有限元多物理耦合仿真技术,建立典型气液两相全稳态流型的二维几何剖分仿真模型。设计双发四收的超声换能器收发方式以及三时... 气液两相流现象广泛存在于石油开采与运输、能源化工、航空航天等诸多领域。针对气液两相流流型识别问题,基于有限元多物理耦合仿真技术,建立典型气液两相全稳态流型的二维几何剖分仿真模型。设计双发四收的超声换能器收发方式以及三时段组合采样的采样模式对气液两相流全流型进行测试,结合超声波在气液流体中的传播机理对声压信号进行特征映射,并作为极限梯度提升树(XGBoost)分类算法的输入参数,实现对气液两相流分层流、泡状流、环状流和塞流4种流型分类。在此基础上,通过挖掘超声机理对分层流和塞流两类流型进行细分,即区分平滑分层流,波状分层流和塞状流、段塞流流型,从而实现对气液两相流全流型分类。超声传播机理特征与时域特征分类效果对比结果表明:搭建的基于超声的多接收分布式超声测试系统能提取更具流型识别性的超声机理特征参数,相较于时频特征具有较高的识别率,气液两相流分层流、泡状流、环状流和塞流总体识别率为98.5%,其中平滑分层流和波状分层流最高识别率为96.15%,气液塞状流和气液段塞流最高识别率为96.85%。 展开更多
关键词 超声测试 有限元仿真 气液两相流 极限梯度提升树 流型识别
在线阅读 下载PDF
基于XGboost和线性回归的军队体系建设“成本-能力”组合优化模型
15
作者 张玉婷 杨镜宇 《系统工程与电子技术》 北大核心 2025年第2期486-495,共10页
不确定性条件下的体系能力评估和优化是提升军事体系建设效能的重要方式和手段。着眼军队体系建设中多种“成本-能力”方案优选问题,借鉴投资组合优化理论,采用极端梯度提升(eXtreme gradient boosting, XGboost)二分类模型、线性回归... 不确定性条件下的体系能力评估和优化是提升军事体系建设效能的重要方式和手段。着眼军队体系建设中多种“成本-能力”方案优选问题,借鉴投资组合优化理论,采用极端梯度提升(eXtreme gradient boosting, XGboost)二分类模型、线性回归、三点估计等方法,构建“成本-能力”组合优化模型,汇总多个评估标准,得出备选方案的经济价值和对备选方案不确定性的敏感程度,综合分析,得到最优备选方案,并将模型应用于体系建设案例中进行验证,研究成果为“成本-能力”组合备选方案评估优选提供理论依据及实践方法。 展开更多
关键词 组合优化 XGboost二分类 线性回归 三点估计 体系能力
在线阅读 下载PDF
基于BOA-XGBoost的沥青路面抗滑性能预测方法 被引量:1
16
作者 许新权 户媛姣 +1 位作者 翁宇涵 何伟杰 《重庆交通大学学报(自然科学版)》 北大核心 2025年第6期35-44,共10页
道路表面纹理是影响抗滑性能的关键因素。为深入研究其影响机理,解决多特征数据条件下传统预测方法精度受限的问题,提出了一种基于贝叶斯优化(BOA)和极端梯度提升(XGBoost)融合的路面抗滑性能评估模型。制备了不同级配类型的沥青混合料... 道路表面纹理是影响抗滑性能的关键因素。为深入研究其影响机理,解决多特征数据条件下传统预测方法精度受限的问题,提出了一种基于贝叶斯优化(BOA)和极端梯度提升(XGBoost)融合的路面抗滑性能评估模型。制备了不同级配类型的沥青混合料试件,基于摆式摩擦仪和三维激光扫描设备分别获取试件表面的摩擦数据和三维纹理数据;提取高度、波长、形状参数用以描述纹理结构,并进行纹理特征重要性分析,明确显著影响抗滑性能因子;引入贝叶斯优化算法的搜索极端梯度来提升模型的最优关键参数,并构建了抗滑性能预估模型。研究结果表明:所提出的模型与对比模型相比,其精度更高,相关系数R^(2)=0.8906,分别比对比模型提升了25.2%、13.0%、15.1%,能有效地关联纹理特征与路面抗滑性能。 展开更多
关键词 道路工程 路面抗滑性能 三维纹理 特征重要性分析 贝叶斯优化算法 极端梯度提升
在线阅读 下载PDF
基于XGBoost⁃PLUS模型的成渝城市群生态安全格局多情景模拟及反规划优化
17
作者 邱大鹅 张军以 +1 位作者 杨晓雪 齐渴路 《生态学报》 北大核心 2025年第16期7905-7920,共16页
工业化城镇化快速发展导致土地利用/土地覆被剧烈变化,造成了土地退化、生物多样性丧失等一系列生态环境问题。基于未来长时间序列土地利用变化的生态安全格局共性问题,“反规划”提出优化策略,就成为应对不确定发展情境下区域生态安全... 工业化城镇化快速发展导致土地利用/土地覆被剧烈变化,造成了土地退化、生物多样性丧失等一系列生态环境问题。基于未来长时间序列土地利用变化的生态安全格局共性问题,“反规划”提出优化策略,就成为应对不确定发展情境下区域生态安全的重要途径。以成渝城市群为研究区,使用InVEST、PLUS模型、XGBoost机器算法等方法,提取潜在生态源地,优化生态阻力面空间权重分配,识别多种发展情境下成渝城市群生态安全格局共性问题并提出优化策略。结果表明:(1)成渝城市群2020和2035年(NDS、CPS、EDS、EPS)生态源地分别为53、51、50、43、51个,面积为24892.75、24462.57、24119.43、23833.75、27249.36 km^(2),空间呈“U”型半包围结构,集中分布在成渝城市群边缘;(2)2020和2035年不同发展情景下成渝城市群生态廊道呈“边缘贯通⁃中疏⁃东密”的网状结构,生态夹点集中分布在川东平行岭谷区,生态障碍点广泛分布在以成都平原为核心的长距生态廊道中部;(3)基于多种发展情境下生态安全格局共性问题“反规划”构建了“一轴两带四区多点”的生态安全优化格局。研究结果可为成渝城市群社会经济与生态安全建设协调发展提供科学依据。 展开更多
关键词 XGboost机器算法 PLUS模型 生态安全格局 电路理论 成渝城市群
在线阅读 下载PDF
基于OVMD-RFECV-PSO-XGBoost模型的大坝变形预测
18
作者 柯扬忠 程小龙 +2 位作者 程志良 刘陶胜 王丽丽 《三峡大学学报(自然科学版)》 北大核心 2025年第5期19-25,共7页
针对大坝变形预测中存在的影响因素多、数据复杂度高和非线性问题,以及不同参数组合对预测精度的显著影响,本文提出了一种融合最优变分模态分解(OVMD)、递归特征消除及交叉验证(RFECV)、粒子群优化算法(PSO)和极限梯度提升算法(XGBoost... 针对大坝变形预测中存在的影响因素多、数据复杂度高和非线性问题,以及不同参数组合对预测精度的显著影响,本文提出了一种融合最优变分模态分解(OVMD)、递归特征消除及交叉验证(RFECV)、粒子群优化算法(PSO)和极限梯度提升算法(XGBoost)的大坝变形预测模型.首先对大坝的变形数据进行OVMD分解,将原始数据分解成K个模态分量;其次,使用RFECV为每个模态分量进行最优特征子集筛选;最后使用PSO对XGBoost的参数进行优化,构建基于OVMD-RFECV-PSO-XGBoost的大坝变形预测模型;以中国江西省某大坝2009—2015年变形监测数据为例,对大坝的垂直沉降位移进行预测,设置不同对照组进行验证.实验结果表明,OVMD-RFECV-PSO-XGBoost预测模型的EMS为0.1411mm,EMAP为5.9455%,R2为0.9348,预测精度均优于其他对照模型. 展开更多
关键词 大坝变形预测 最优变分模态分解 递归特征消除及交叉验证 粒子群优化算法 极限梯度提升算法 机器学习
在线阅读 下载PDF
融合XGBoost与Transformer的飞行员操纵风险预警方法
19
作者 王文超 何健 +1 位作者 汪磊 张航宾 《中国安全科学学报》 北大核心 2025年第9期121-128,共8页
为强化飞行过程中的风险管理机制,提出一种融合飞行大数据的飞行员操纵风险性预警方法。首先,从快速存取记录仪(QAR)数据中筛选与不稳定进近相关的核心参数,并利用梯度提升决策树(XGBoost)算法进行特征优化,确定关键风险预警指标。然后... 为强化飞行过程中的风险管理机制,提出一种融合飞行大数据的飞行员操纵风险性预警方法。首先,从快速存取记录仪(QAR)数据中筛选与不稳定进近相关的核心参数,并利用梯度提升决策树(XGBoost)算法进行特征优化,确定关键风险预警指标。然后,融合Transformer网络的注意力机制,构建有效捕捉时空依赖性的动态风险识别架构。最后,以山东某航空公司B737-800型机的航班数据为例,验证方法性能。结果表明:该方法能够有效预测飞行中的风险事件,尤其在降落前的关键时刻,方法可提供高精度的风险预警。与传统预警方法相比,该方法在识别精度、方法泛化性以及特征提取效能方面表现出显著优势。 展开更多
关键词 飞行员 风险预警 极限梯度提升(XGboost) TRANSFORMER 快速存取记录仪(QAR)
在线阅读 下载PDF
基于JITL-XGBoost的烧结终点预测模型
20
作者 王金杨 吴朝霞 +1 位作者 李中正 康增鑫 《东北大学学报(自然科学版)》 北大核心 2025年第2期28-34,41,共8页
烧结终点(burning through point,BTP)位置是烧结过程中重要的参数,直接影响烧结机效率.由于烧结生产过程具有多工况、时变等特性,使得全局模型预测性能不足,为此提出了一种在即时学习框架中使用极端梯度提升(extreme gradient boosting... 烧结终点(burning through point,BTP)位置是烧结过程中重要的参数,直接影响烧结机效率.由于烧结生产过程具有多工况、时变等特性,使得全局模型预测性能不足,为此提出了一种在即时学习框架中使用极端梯度提升(extreme gradient boosting,XGBoost)作为局部模型的烧结终点预测模型,即JITL(just-intime learning)-XGBoost.首先采用KL散度(Kullback-Leibler divergence)相似性度量方法提取待测样本的特性,选出与待测样本最相关的数据集.然后将该数据集作为XGBoost模型的输入来预测烧结终点的位置.此外,考虑了相关数据集数量对模型预测精度和计算时间的影响.最后与其他模型对比,结果表明,所建模型在合理的时间内具有最佳预测精度,为提高烧结机效率提供新的指导方向. 展开更多
关键词 烧结矿 烧结终点 预测模型 即时学习 极端梯度提升
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部