Objective To investigate whether extracellular signal-regulated kinase (ERK1/2) was involved in changes of vascular smooth muscle cell (VSMC) under hypertension.Methods Two-kidney one clip Wistar hypertensive rats (WH...Objective To investigate whether extracellular signal-regulated kinase (ERK1/2) was involved in changes of vascular smooth muscle cell (VSMC) under hypertension.Methods Two-kidney one clip Wistar hypertensive rats (WHR) were sacrificed and their right kidneys were harvested 4 weeks after surgery.The spontaneously hypertensive rats (SHR) were divided into 4, 8, and 16 weeks old groups (SHR4w, SHR8w, and SHR16w), respectively.The control group were sham operated age-matched Wistar rats.Immunohistochemical technique and Western blotting were applied to study ERK1/2 protein expression in VSMC of the renal vascular trees in WHR, SHR, and control rats.Results Blood pressure in two-kidney one clip WHR obviously increased at one week after surgery, and reached to 198.00±33.00 mm Hg at the end of experiment, significantly higher than that in the control rats (P<0.01).Blood pressure in SHR4w (108.00±11.25 mm Hg) was similar to that in the controls.However, it rose to 122.25±21.75 mm Hg in SHR8w, and even up to 201.75±18.00 mm Hg in SHR16w, which were significantly higher than that of both the SHR4w and the controls (P<0.01).The rate and degree of glomerular fibrosis in WHR were significantly higher than controls (P<0.05).Hyaline degeneration of the afferent arterioles was found in WHR.In contrast, either fibrosis of glomerulus or hyaline degeneration of the arterioles or protein casts was not observed in SHR4w, SHR8w, and SHR16w.Immunohistochemical staining results showed expression of ERK1 was similar to that of ERK2.The positive rates of ERK2 staining in VSMC of afferent arterioles, interlobular, interlobar, and arcuate arteries in two-kidney one clip WHR were significantly higher (7.09%±1.75%, 14.57%±4.58%, 29.44%±7.35%, and 13.63%±3.85%, respectively) than that of the controls(P<0.01).The positive rates of ERK2 staining in VSMC at afferent arterioles, interlobular, interlobar, and arcuate arteries in SHR16w were significantly higher (12.09%±1.40%, 24.17%±6.92%, 32.44%±4.05%, and 18.61%±3.35%, respectively) than that of the controls (P<0.01), too.The expression of ERK1/2 protein of kidney in WHR and SHR16w was significantly higher than that in the controls by Western blotting assay (P<0.01).Conclusion Extracellular signal transduction system are highly expressed in kidney VSMC of two-kidney one clip WHR and SHR.Phospho-ERK1/2 may play an important role in VSMC hypertrophy and hyperplasia under hypertension.展开更多
Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultu...Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultured rat IIEC-6 cells with or without the pretreatment of intracellular Ca2+ chelator were exposed to Y-ir-radiation of 6 Gy, the total and phosphorylated MAPKs in the cells were determined with Western blotting and apoptosis was examined with flow cytometry. Activities of Extracellular signal-regulated protein kinase (ERK) and p38 MAPK were determined by using immuoprecipitation followed by Western blotting. Results: In response to γ-irradiation, phosphorylation of ERK was not significantly observed, while the levels of phosphorylated c-Jun NH2-terminal kinase (JNK) and p38 MAPK were increased in 30 min and reached the peak 2 h after exposure to 6 Gy γ-irradiation, though the cell viability was significantly lowered 12 h. On the other hand, no obvious changes were seen in the total protein levels of ERK, JNK and p38 MAPK. Chelation of intracellular Ca2+ almost completely suppressed the JNK and p38 MAPK phosphorylation induced by γ-irradia-tion, but removal of external Ca2+ had no such effect. Activation of p38 MAPK, but not of ERK, was seen to have a correlation with γ-irradiation induced apoptosis. Conclusion: The results suggest that γ-irradiation is a potent activator for JNK and p38 MAPK, and Ca2+ mobilized from intracellular stores plays an important role in the activation of MAPKs and the induction of apoptosis in IEC-6 cells.展开更多
Background:Kirsten rat sarcoma(KRAS)and mutant KRAS^(G12D)have been implicated in human cancers,but it remains unclear whether their activation requires ubiquitination.This study aimed to investigate whether and how F...Background:Kirsten rat sarcoma(KRAS)and mutant KRAS^(G12D)have been implicated in human cancers,but it remains unclear whether their activation requires ubiquitination.This study aimed to investigate whether and how F-box and leucine-rich repeat 6(FBXL6)regulates KRAS and KRAS^(G12D)activity in hepatocellular carcinoma(HCC).Methods:We constructed transgenic mouse strains LC(LSL-Fbxl6^(KI/+);Alb-Cre,n=13),KC(LSL-Kras^(G12D/+);Alb-Cre,n=10)and KLC(LSL-Kras^(G12D/+);LSL-Fbxl6^(KI/+);Alb-Cre,n=12)mice,and then monitored HCC for 320 d.Multiomics approaches and pharmacological inhibitors were used to determine oncogenic signaling in the context of elevated FBXL6 and KRAS activation.Co-immunoprecipitation(Co-IP),Western blotting,ubiquitination assay,and RAS activity detection assay were employed to investigate the underlying molecular mechanism by which FBXL6 activates KRAS.The pathological relevance of the FBXL6/KRAS/extracellular signal-regulated kinase(ERK)/mammalian target of rapamycin(mTOR)/proteins of relevant evolutionary and lymphoid interest domain 2(PRELID2)axis was evaluated in 129 paired samples from HCC patients.Results:FBXL6 is highly expressed in HCC as well as other human cancers(P<0.001).Interestingly,FBXL6 drives HCC in transgenic mice.Mechanistically,elevated FBXL6 promotes the polyubiquitination of both wild-type KRAS and KRAS^(G12D)at lysine 128,leading to the activation of both KRAS and KRAS^(G12D)and promoting their binding to the serine/threonine-protein kinase RAF,which is followed by the activation of mitogen-activated protein kinase kinase(MEK)/ERK/mTOR signaling.The oncogenic activity of the MEK/ERK/mTOR axis relies on PRELID2,which induces reactive oxygen species(ROS)generation.Furthermore,hepatic FBXL6 upregulation facilitates KRAS^(G12D)to induce more severe hepatocarcinogenesis and lung metastasis via the MEK/ERK/mTOR/PRELID2/ROS axis.Dual inhibition of MEK and mTOR effectively suppresses tumor growth and metastasis in this subtype of cancer in vivo.In clinical samples,FBXL6 expression positively correlates with p-ERK(χ^(2)=85.067,P<0.001),p-mTOR(χ^(2)=66.919,P<0.001)and PRELID2(χ^(2)=20.891,P<0.001).The Kaplan-Meier survival analyses suggested that HCC patients with high FBXL6/p-ERK levels predicted worse overall survival(log-rank P<0.001).Conclusions:FBXL6 activates KRAS or KRAS^(G12D)via ubiquitination at the site K128,leading to activation of the ERK/mTOR/PRELID2/ROS axis and tumorigenesis.Dual inhibition of MEK and mTOR effectively protects against FBXL6-and KRAS^(G12D)-induced tumorigenesis,providing a potential therapeutic strategy to treat this aggressive subtype of liver cancer.展开更多
Objective: To investigate the activation (phosphorylation) and subcellular localization of extracellular signal-regulated kinase (ERK1/2), as well as the possible mechanism, following cerebral ischemia and ischem...Objective: To investigate the activation (phosphorylation) and subcellular localization of extracellular signal-regulated kinase (ERK1/2), as well as the possible mechanism, following cerebral ischemia and ischemia/reperfusion in rat hippocampus. Methods: Transient brain ischemia was induced by the four-vessel occlusion method in Sprague-Dawley rats. Western blot analysis. Results: During cerebral ischemia without reperfusion ERK1/2 activation immediately increased with a peak at 5 min and then decreased in the cytosol fraction, which was paralleled by the increase of ERK1/2 activation in the nucleus fraction. During reperfusion, ERK1/2 was activated with peaks occurring at 10 min in the cytosol and at 30 min in the nucleus, respectively. Under those conditions, the protein expressions had no significant change. In order to clarify the possible mechanism of ERK1/2 activation, the rats were intraperitoneally administrated with N-methyl-D-aspartate (NMDA) receptor antagonist dextromethorphan (DM), L-type voltage-gated Ca^2+ channel (L-VGCC) antagonist nifedipine (ND) 20 rain before ischemia, finding that DM and ND markedly prevented ERK1/2 activation of nucleus fraction induced by reperfusion, not by ischemia. Conclusion: These results suggested that the nuclear translocation mainly occurred during ischemia, while ischemia-reperfusion induced ERK1/2 activation both in the cytosol and the nucleus. Two type calcium channels contributed, at least partially, to the activation of ERK1/2.展开更多
文摘Objective To investigate whether extracellular signal-regulated kinase (ERK1/2) was involved in changes of vascular smooth muscle cell (VSMC) under hypertension.Methods Two-kidney one clip Wistar hypertensive rats (WHR) were sacrificed and their right kidneys were harvested 4 weeks after surgery.The spontaneously hypertensive rats (SHR) were divided into 4, 8, and 16 weeks old groups (SHR4w, SHR8w, and SHR16w), respectively.The control group were sham operated age-matched Wistar rats.Immunohistochemical technique and Western blotting were applied to study ERK1/2 protein expression in VSMC of the renal vascular trees in WHR, SHR, and control rats.Results Blood pressure in two-kidney one clip WHR obviously increased at one week after surgery, and reached to 198.00±33.00 mm Hg at the end of experiment, significantly higher than that in the control rats (P<0.01).Blood pressure in SHR4w (108.00±11.25 mm Hg) was similar to that in the controls.However, it rose to 122.25±21.75 mm Hg in SHR8w, and even up to 201.75±18.00 mm Hg in SHR16w, which were significantly higher than that of both the SHR4w and the controls (P<0.01).The rate and degree of glomerular fibrosis in WHR were significantly higher than controls (P<0.05).Hyaline degeneration of the afferent arterioles was found in WHR.In contrast, either fibrosis of glomerulus or hyaline degeneration of the arterioles or protein casts was not observed in SHR4w, SHR8w, and SHR16w.Immunohistochemical staining results showed expression of ERK1 was similar to that of ERK2.The positive rates of ERK2 staining in VSMC of afferent arterioles, interlobular, interlobar, and arcuate arteries in two-kidney one clip WHR were significantly higher (7.09%±1.75%, 14.57%±4.58%, 29.44%±7.35%, and 13.63%±3.85%, respectively) than that of the controls(P<0.01).The positive rates of ERK2 staining in VSMC at afferent arterioles, interlobular, interlobar, and arcuate arteries in SHR16w were significantly higher (12.09%±1.40%, 24.17%±6.92%, 32.44%±4.05%, and 18.61%±3.35%, respectively) than that of the controls (P<0.01), too.The expression of ERK1/2 protein of kidney in WHR and SHR16w was significantly higher than that in the controls by Western blotting assay (P<0.01).Conclusion Extracellular signal transduction system are highly expressed in kidney VSMC of two-kidney one clip WHR and SHR.Phospho-ERK1/2 may play an important role in VSMC hypertrophy and hyperplasia under hypertension.
基金in part by Natural Sciences Foundation of China (No. 39870239)by the Sasagawa Fellowship,Japan.
文摘Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultured rat IIEC-6 cells with or without the pretreatment of intracellular Ca2+ chelator were exposed to Y-ir-radiation of 6 Gy, the total and phosphorylated MAPKs in the cells were determined with Western blotting and apoptosis was examined with flow cytometry. Activities of Extracellular signal-regulated protein kinase (ERK) and p38 MAPK were determined by using immuoprecipitation followed by Western blotting. Results: In response to γ-irradiation, phosphorylation of ERK was not significantly observed, while the levels of phosphorylated c-Jun NH2-terminal kinase (JNK) and p38 MAPK were increased in 30 min and reached the peak 2 h after exposure to 6 Gy γ-irradiation, though the cell viability was significantly lowered 12 h. On the other hand, no obvious changes were seen in the total protein levels of ERK, JNK and p38 MAPK. Chelation of intracellular Ca2+ almost completely suppressed the JNK and p38 MAPK phosphorylation induced by γ-irradia-tion, but removal of external Ca2+ had no such effect. Activation of p38 MAPK, but not of ERK, was seen to have a correlation with γ-irradiation induced apoptosis. Conclusion: The results suggest that γ-irradiation is a potent activator for JNK and p38 MAPK, and Ca2+ mobilized from intracellular stores plays an important role in the activation of MAPKs and the induction of apoptosis in IEC-6 cells.
基金supported by the National Natural Science Foundation of China(82370631)the Talent Foundations from Army Medical University(4174C6),the Chongqing Government(CQYC20220303727)to Xie CMthe National Natural Science Foundation of China(31900449)to Xiong HJ.
文摘Background:Kirsten rat sarcoma(KRAS)and mutant KRAS^(G12D)have been implicated in human cancers,but it remains unclear whether their activation requires ubiquitination.This study aimed to investigate whether and how F-box and leucine-rich repeat 6(FBXL6)regulates KRAS and KRAS^(G12D)activity in hepatocellular carcinoma(HCC).Methods:We constructed transgenic mouse strains LC(LSL-Fbxl6^(KI/+);Alb-Cre,n=13),KC(LSL-Kras^(G12D/+);Alb-Cre,n=10)and KLC(LSL-Kras^(G12D/+);LSL-Fbxl6^(KI/+);Alb-Cre,n=12)mice,and then monitored HCC for 320 d.Multiomics approaches and pharmacological inhibitors were used to determine oncogenic signaling in the context of elevated FBXL6 and KRAS activation.Co-immunoprecipitation(Co-IP),Western blotting,ubiquitination assay,and RAS activity detection assay were employed to investigate the underlying molecular mechanism by which FBXL6 activates KRAS.The pathological relevance of the FBXL6/KRAS/extracellular signal-regulated kinase(ERK)/mammalian target of rapamycin(mTOR)/proteins of relevant evolutionary and lymphoid interest domain 2(PRELID2)axis was evaluated in 129 paired samples from HCC patients.Results:FBXL6 is highly expressed in HCC as well as other human cancers(P<0.001).Interestingly,FBXL6 drives HCC in transgenic mice.Mechanistically,elevated FBXL6 promotes the polyubiquitination of both wild-type KRAS and KRAS^(G12D)at lysine 128,leading to the activation of both KRAS and KRAS^(G12D)and promoting their binding to the serine/threonine-protein kinase RAF,which is followed by the activation of mitogen-activated protein kinase kinase(MEK)/ERK/mTOR signaling.The oncogenic activity of the MEK/ERK/mTOR axis relies on PRELID2,which induces reactive oxygen species(ROS)generation.Furthermore,hepatic FBXL6 upregulation facilitates KRAS^(G12D)to induce more severe hepatocarcinogenesis and lung metastasis via the MEK/ERK/mTOR/PRELID2/ROS axis.Dual inhibition of MEK and mTOR effectively suppresses tumor growth and metastasis in this subtype of cancer in vivo.In clinical samples,FBXL6 expression positively correlates with p-ERK(χ^(2)=85.067,P<0.001),p-mTOR(χ^(2)=66.919,P<0.001)and PRELID2(χ^(2)=20.891,P<0.001).The Kaplan-Meier survival analyses suggested that HCC patients with high FBXL6/p-ERK levels predicted worse overall survival(log-rank P<0.001).Conclusions:FBXL6 activates KRAS or KRAS^(G12D)via ubiquitination at the site K128,leading to activation of the ERK/mTOR/PRELID2/ROS axis and tumorigenesis.Dual inhibition of MEK and mTOR effectively protects against FBXL6-and KRAS^(G12D)-induced tumorigenesis,providing a potential therapeutic strategy to treat this aggressive subtype of liver cancer.
基金Supported by grants from the Education Departmental Natural Science Research Funds of Hebei and Jiangsu Provinces of China (200510604KJD310207)the Key Project of the National Natural Science Foundation of China (No. 30330190).
文摘Objective: To investigate the activation (phosphorylation) and subcellular localization of extracellular signal-regulated kinase (ERK1/2), as well as the possible mechanism, following cerebral ischemia and ischemia/reperfusion in rat hippocampus. Methods: Transient brain ischemia was induced by the four-vessel occlusion method in Sprague-Dawley rats. Western blot analysis. Results: During cerebral ischemia without reperfusion ERK1/2 activation immediately increased with a peak at 5 min and then decreased in the cytosol fraction, which was paralleled by the increase of ERK1/2 activation in the nucleus fraction. During reperfusion, ERK1/2 was activated with peaks occurring at 10 min in the cytosol and at 30 min in the nucleus, respectively. Under those conditions, the protein expressions had no significant change. In order to clarify the possible mechanism of ERK1/2 activation, the rats were intraperitoneally administrated with N-methyl-D-aspartate (NMDA) receptor antagonist dextromethorphan (DM), L-type voltage-gated Ca^2+ channel (L-VGCC) antagonist nifedipine (ND) 20 rain before ischemia, finding that DM and ND markedly prevented ERK1/2 activation of nucleus fraction induced by reperfusion, not by ischemia. Conclusion: These results suggested that the nuclear translocation mainly occurred during ischemia, while ischemia-reperfusion induced ERK1/2 activation both in the cytosol and the nucleus. Two type calcium channels contributed, at least partially, to the activation of ERK1/2.