In this paper, an extended functional transformation is given to solve some nonlinear evolution equations. This function, in fact, is a solution of the famous KdV equation, so this transformation gives a transformatio...In this paper, an extended functional transformation is given to solve some nonlinear evolution equations. This function, in fact, is a solution of the famous KdV equation, so this transformation gives a transformation between KdV equation and other soliton equations. Then many new exact solutions can be given by virtue of the solutions of KdV equation.展开更多
The evolution of solitons in Bose-Einstein condensates (BECs) with time-dependent atomic scattering length in an expulsive parabolic potential is studied. Based on the extended hyperbolic function method, we success...The evolution of solitons in Bose-Einstein condensates (BECs) with time-dependent atomic scattering length in an expulsive parabolic potential is studied. Based on the extended hyperbolic function method, we successfully obtain the bright and dark soliton solutions. In addition, some new soliton solutions in this model are found. The results in this paper include some in the literature (Phys. Rev. Lett. 94(2005)050402 and Chin. Phys. Lett. 22(2005) 1855).展开更多
In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the ...In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the aid of the symbolic computation system Maple. Some new discrete Jacobian doubly periodic solutions are obtained. When the modulus m →1, these doubly periodic solutions degenerate into the corresponding solitary wave solutions, including kink-type, bell-type and other types of excitations.展开更多
The so-called extended hyperbolic complex (EHC) function method is used to study further the stationary axisymmetric Einstein Maxwell theory with p Abelian gauge fields (EM-p theory, for short), Two EHC structural...The so-called extended hyperbolic complex (EHC) function method is used to study further the stationary axisymmetric Einstein Maxwell theory with p Abelian gauge fields (EM-p theory, for short), Two EHC structural Riemann- Hilbert (RH) transformations are constructed and are then shown to give an infinite-dimensional symmetry group of the EM-p theory. This symmetry group is verified to have the structure of semidirect product of Kac-Moody group SU(p + 1, 1) and Virasoro group. Moreover, the infinitesimal forms of these two RH transformations are calculated and found to give exactly the same infinitesimal transformations as in previous author's paper by a different scheme, This demonstrates that the results obtained in the present paper provide some exponentiations of all the infinitesimal symmetry transformations obtained before.展开更多
文摘In this paper, an extended functional transformation is given to solve some nonlinear evolution equations. This function, in fact, is a solution of the famous KdV equation, so this transformation gives a transformation between KdV equation and other soliton equations. Then many new exact solutions can be given by virtue of the solutions of KdV equation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 1057508 and 10302018), the Natural Science Foundation of Zhejiang Province, China (Grant No Y605056).
文摘The evolution of solitons in Bose-Einstein condensates (BECs) with time-dependent atomic scattering length in an expulsive parabolic potential is studied. Based on the extended hyperbolic function method, we successfully obtain the bright and dark soliton solutions. In addition, some new soliton solutions in this model are found. The results in this paper include some in the literature (Phys. Rev. Lett. 94(2005)050402 and Chin. Phys. Lett. 22(2005) 1855).
基金Project supported by the National Natural Science Foundation of China (Grant No 10272071) and the Natural Science Foundation of Zhejiang Lishui University of China (Grant Nos KZ05004 and KY06024).
文摘In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the aid of the symbolic computation system Maple. Some new discrete Jacobian doubly periodic solutions are obtained. When the modulus m →1, these doubly periodic solutions degenerate into the corresponding solitary wave solutions, including kink-type, bell-type and other types of excitations.
基金Project supported by the Science Foundation from Education Department of Liaoning Province, China (Grant No 202142036) and the National Natural Science Foundation of China (Grant No 10475036).
文摘The so-called extended hyperbolic complex (EHC) function method is used to study further the stationary axisymmetric Einstein Maxwell theory with p Abelian gauge fields (EM-p theory, for short), Two EHC structural Riemann- Hilbert (RH) transformations are constructed and are then shown to give an infinite-dimensional symmetry group of the EM-p theory. This symmetry group is verified to have the structure of semidirect product of Kac-Moody group SU(p + 1, 1) and Virasoro group. Moreover, the infinitesimal forms of these two RH transformations are calculated and found to give exactly the same infinitesimal transformations as in previous author's paper by a different scheme, This demonstrates that the results obtained in the present paper provide some exponentiations of all the infinitesimal symmetry transformations obtained before.