期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Analysis of Gene Expression Pattern of Lumbar Intervertebral Disc Degeneration in Human 被引量:4
1
作者 HU Ming MA Yuan-zheng FENG Hui-cheng CHEN Xing CHAI Xiao-jun PENG Wei LI Hong-wei 《中国康复理论与实践》 CSCD 2006年第5期420-422,共3页
ObjectiveTo investigate the gene expression changes in normal and degeneration lumbar intervertebral disc in humans, providing information for clinical. MethodsThe PCR products of 4096 human genes were spotted onto a ... ObjectiveTo investigate the gene expression changes in normal and degeneration lumbar intervertebral disc in humans, providing information for clinical. MethodsThe PCR products of 4096 human genes were spotted onto a kind of chemical-material-coated-glass slides. The total RNAs were isolated from the tissues. Both the mRNAs from the degeneration and normal lumbar intervertebral disc in humans were reversely transcribed to the cDNAs, which used as the hybridization probes with the incorporations of fluorescent dUTP. The mixed probes were then hybridized to the cDNA microarray. After high-stringent washing, the cDNA microarray was scanned for the fluorescent signals and analyzed with computer image analysis. ResultsAmong the 4096 targets, there were 706 genes whose expression levels differed between the degeneration and normal lumbar intervertebral disc in all cases, comprising 298 up-regulated and 358 down-regulated ones. ConclusionDNA microarray technology is an effective technique in screening for differently expressed genes between the degeneration and normal lumbar intervertebral disc. Cell apoptosis plays an important role in the process of lumbar intervertebral disc degeneration. 展开更多
关键词 intervertebral disc degeneration DNA microarray gene expression pattern
在线阅读 下载PDF
A genome-wide analysis of SWEET gene family in cotton and their expressions under different stresses 被引量:7
2
作者 ZHAO Lanjie YAO Jinbo +7 位作者 CHEN Wei LI Yan L Youjun GUO Yan WANG Junyi YUAN Li LIU Ziyang ZHANG Yongshan 《Journal of Cotton Research》 2018年第2期12-26,共15页
Background: The SWEET (Sugars will eventually be exported transporters) gene family plays multiple roles in plant physiological activities and development process. It participates in reproductive development and in... Background: The SWEET (Sugars will eventually be exported transporters) gene family plays multiple roles in plant physiological activities and development process. It participates in reproductive development and in the process of sugar transport and absorption, plant senescence and stress responses and plant-pathogen interaction. However, thecomprehensive analysis of SWEET genes has not been reported in cotton. Results: In this study, we identified 22, 31, 55 and 60 SWEETgenes from the sequenced genomes of Gossypium orboreum, G. rairnondii, G. hirsutum and G. borbadense, respectively. Phylogenetic tree analysis showed that the SWEET genes could be divided into four groups, which were further classified into 14 sub-clades. Further analysis of chromosomal location, synteny analysis and gene duplication suggested that the orthologs showed a good collinearity and segmental duplication events played a crucial role in the expansion of the family in cotton. Specific MtN3_slv domains were highly conserved between Arabidopsis and cotton by exon-intron organization and motif analysis. In addition, the expression pattern in different tissues indicated that the duplicated genes in cotton might have acquired new functions as a result of sub-functionalization or neo-functionalization. The expression pattern of SWEET genes showed that the different genes were induced by diverse stresses. The identification and functional analysis of SWEET genes in cotton may provide more candidate genes for genetic modification. Conclusion: SWEET genes were classified into four clades in cotton. The expression patterns suggested that the duplicated genes might have experienced a functional divergence. This work provides insights into the evolution of SWEETgenes and more candidates for specific genetic modification, which will be useful in future research. 展开更多
关键词 GOSSYPIUM Sugars will eventually be exported transporters (SWEETs) Gene expression patterns Stress
在线阅读 下载PDF
Identification, characterization, and expression profiles of the GASA genes in cotton 被引量:2
3
作者 QIAO Kaikai MA Changkai +3 位作者 LV Jiaoyan ZHANG Chaojun MA Qifeng FAN Shuli 《Journal of Cotton Research》 2021年第1期50-65,共16页
Background:GASA(Giberellic Acid Stimulated in Arabidopsis)gene family plays a crucial role in the phytohormone signaling pathway,growth and development,and stress responses in plants.Many GASA homologs have been ident... Background:GASA(Giberellic Acid Stimulated in Arabidopsis)gene family plays a crucial role in the phytohormone signaling pathway,growth and development,and stress responses in plants.Many GASA homologs have been identified in various plants.Nevertheless,little is known about these proteins in cotton.Results:In the current study,we identified 19,17,25,33,and 38 GASA genes via genome-wide analyses of Gossypium herbaceum,G.arboreum,G.raimondii,G.barbadense,and G.hirsutum,respectively,and performed comprehensive bioinformatics and expression analyses.According to our results,132 GASA proteins shared similar protein structures and were classified into four groups based on the phylogenetic tree.A synteny analysis suggested that segmental duplication was a key driver in the expansion of the GASA gene family.Meanwhile,the cis-element and protein interaction analyses indicated that GhGASA proteins play a significant role in the hormone responses.Transcriptomic and qRT-PCR(Quantitative real time-polymerase chain reaction)analyses revealed diverse expression profiles of the GhGASA genes in different organs under abiotic stresses,indicating that some GhGASA genes possibly participate in fiber development and abiotic-stress responses.Conclusions:The GASA genes in cotton were systematically identified and analyzed for the first time in this paper,and it suggested that the GASA genes are important to the development and growth of cotton.These results will support future exploration of the functions of GASA genes in cotton. 展开更多
关键词 GASA gene GENOME-WIDE BIOINFORMATICS Expression pattern COTTON
在线阅读 下载PDF
Intestine metrnl acts as a local regulator released into gut lumen and maintaining gut antimicrobial peptides
4
作者 LI Zhi-yong FAN Mao-bing +3 位作者 QU Yi ZHENG Si-li SONG Jie MIAO Chao-yu 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2016年第10期1092-1092,共1页
OBJECTIVE Metrnl is a novel secreted protein with limited researches.In this study,we investigated metrnl tissue expression pattern in humans,and exploredthe possible role of its highest expression using animal models... OBJECTIVE Metrnl is a novel secreted protein with limited researches.In this study,we investigated metrnl tissue expression pattern in humans,and exploredthe possible role of its highest expression using animal models.METHODS We examined metrnl tissue expression pattern in a human tissue microarray containing 19types of tissues from 69 donors,and verified the highest expression in fresh human and mouse tissues.We then created an animal model of cell-specific knockout mice to study the role of metrnl.RESULTS Metrnl was the highest expressed in human gastrointestinal tract,and specifical y expressed in the intestinal epithelium.Consistently,Metrnl expression was also the highest expressed in mouse gastrointestinal tract among the detected tissues of 14 types.We developed intestinal epithelial cellspecific metrnl knockout mice with Vil in-Cre.In this animal model,metrnl levels displayed a statistically significant reduction in gut fluid,but not in blood serum.This cell specific deletion of metrnl did not affect body weight,food intake,blood glucose,colon length and histology,intestinal permeability,mucus production and mucin 2 expression under physiological conditions,but markedly reduced the expression of antimicrobial peptides,such as regenerating islet-derived 3 gamma and lactotransferrin.CONCLUSION Metrnl is rich in intestinal epithelial cells of humans and mice,mainly contributing to local gut metrnl level,and less affecting systemic circulating metrnl level.Metrnl plays a role in maintaining gut antimicrobial peptides. 展开更多
关键词 metrnl secreted protein human expression pattern INTESTINE epithelial cel antimicrobial peptide
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部