为提高输电线路的防雷性能,从灭弧防雷间隙和绝缘子配合时的伏秒特性出发,对爆炸波冲击作用下灭弧装置的灭弧机理进行了研究。基于电弧黑盒模型对暂态电弧进行建模,得出故障电流切除时电弧的电压、电流、电压变化率、电流变化率波形,并...为提高输电线路的防雷性能,从灭弧防雷间隙和绝缘子配合时的伏秒特性出发,对爆炸波冲击作用下灭弧装置的灭弧机理进行了研究。基于电弧黑盒模型对暂态电弧进行建模,得出故障电流切除时电弧的电压、电流、电压变化率、电流变化率波形,并进行了试验验证。结果表明:5 k A故障短路电流在第1次过零点时被切断,在爆炸冲击波作用下电弧在5 ms内经拉伸到变形到断裂直至熄灭,且未出现重燃;仿真结果与试验结果一致。基于该原理的灭弧装置现场试运行良好,验证了灭弧间隙的实用性。展开更多
多断口爆炸气流灭弧防雷间隙是一种主要针对10 k V电压等级输电线路的新型灭弧防雷装置。为研究其灭弧能力,利用短路发电机提供5 k A最大工频电流,对其灭弧过程进行了试验。试验现象说明:爆炸气流能够强烈干预电弧,在短时间内将电弧迅...多断口爆炸气流灭弧防雷间隙是一种主要针对10 k V电压等级输电线路的新型灭弧防雷装置。为研究其灭弧能力,利用短路发电机提供5 k A最大工频电流,对其灭弧过程进行了试验。试验现象说明:爆炸气流能够强烈干预电弧,在短时间内将电弧迅速拉长并吹出陶瓷管外,加快电弧等离子体热游离和电弧能量的扩散,瞬间冷却并熄灭电弧。试验结果表明:从装置触发到灭弧结束历时70μs左右,其中从气流接触电弧到电弧熄灭的时间小于10μs,并且有TNT装置的灭弧效果要明显优于无TNT的装置,装置触发后产生的高速气流能够维持时间为600μs,强烈作用于电弧生成的初始阶段,实现对电弧的长久抑制,不会出现残压和电弧重燃现象,而且此装置能经受50次65 k A大电流冲击或20次100 k A大电流冲击。证明多断口爆炸气体灭弧防雷间隙装置能切实保证供电可靠性,保障电网的正常运行。展开更多
高压电缆接头发生电弧故障时,电弧通道膨胀产生的爆炸冲击波是造成二次事故的直接原因,研究接头的短路电弧爆炸波能对高压电缆接头保护装置的结构设计和防爆性能检验至关重要。文中设计并实施了50 k A/200 ms大电流人工短路燃弧试验,实...高压电缆接头发生电弧故障时,电弧通道膨胀产生的爆炸冲击波是造成二次事故的直接原因,研究接头的短路电弧爆炸波能对高压电缆接头保护装置的结构设计和防爆性能检验至关重要。文中设计并实施了50 k A/200 ms大电流人工短路燃弧试验,实测了220 kV高压电缆接头保护装置泄能孔释放的爆炸冲击波超压值。建立了电缆接头及保护装置的热—流场短路电弧爆炸仿真模型,计算了不同热源能量时,从泄能孔释放的冲击波超压。通过对比相同条件下人工短路燃弧试验中的冲击波超压实测数值,得到了220 kV高压电缆接头短路电弧的爆炸波能。所得结果可为220 kV高压电缆接头保护装置的设计和检测提供理论依据。展开更多
文摘为提高输电线路的防雷性能,从灭弧防雷间隙和绝缘子配合时的伏秒特性出发,对爆炸波冲击作用下灭弧装置的灭弧机理进行了研究。基于电弧黑盒模型对暂态电弧进行建模,得出故障电流切除时电弧的电压、电流、电压变化率、电流变化率波形,并进行了试验验证。结果表明:5 k A故障短路电流在第1次过零点时被切断,在爆炸冲击波作用下电弧在5 ms内经拉伸到变形到断裂直至熄灭,且未出现重燃;仿真结果与试验结果一致。基于该原理的灭弧装置现场试运行良好,验证了灭弧间隙的实用性。
文摘多断口爆炸气流灭弧防雷间隙是一种主要针对10 k V电压等级输电线路的新型灭弧防雷装置。为研究其灭弧能力,利用短路发电机提供5 k A最大工频电流,对其灭弧过程进行了试验。试验现象说明:爆炸气流能够强烈干预电弧,在短时间内将电弧迅速拉长并吹出陶瓷管外,加快电弧等离子体热游离和电弧能量的扩散,瞬间冷却并熄灭电弧。试验结果表明:从装置触发到灭弧结束历时70μs左右,其中从气流接触电弧到电弧熄灭的时间小于10μs,并且有TNT装置的灭弧效果要明显优于无TNT的装置,装置触发后产生的高速气流能够维持时间为600μs,强烈作用于电弧生成的初始阶段,实现对电弧的长久抑制,不会出现残压和电弧重燃现象,而且此装置能经受50次65 k A大电流冲击或20次100 k A大电流冲击。证明多断口爆炸气体灭弧防雷间隙装置能切实保证供电可靠性,保障电网的正常运行。