The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled h...The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.展开更多
In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated fl...In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated floating slabs longitudinally interconnected with magnesium ammonium phosphate concrete(MPC).This study investigated the dynamic performance of the structure.We constructd a full-scale indoor experimental model to scrutinize the disparities in the impact performance between a longitudinally connected floating slab track and its longitudinally disconnected counterpart.Additionally,a long-term fatigue experiment was conducted to assess the impact performance of longitudinally connected floating slab tracks under fatigue loading.The findings are described in the following.1)The new structure effectively suppresses ground vibrations,exhibiting a well-balanced energy distribution profile.However,the imposition of fatigue loading leads to a reduction in the damping performance of the steel spring damping system,thereby reducing its capacity to attenuate structural vibrations and leading to an increase in ground vibration energy;2)After 107 loading cycles,the attenuation rate of the vibration acceleration for the MPC increases by 171.9%.Conversely,at the corresponding disconnected location,the attenuation rate of ground vibration acceleration decreases by 65.6%.In conclusion,longitudinally connected floating slab tracks exhibit superior vibration reduction performance.While the vibration reduction performance of longitudinally connected floating slab tracks may diminish to some extent during long-term service,these tracks continue to meet specific vibration reduction requirements.展开更多
Correction:J Cotton Res 8,27(2025)https://doi.org/10.1186/s42397-025-00228-y During the publication process of the original article(Soltani Toularoud et al.2025),the article title has been wrongly captured.Te article ...Correction:J Cotton Res 8,27(2025)https://doi.org/10.1186/s42397-025-00228-y During the publication process of the original article(Soltani Toularoud et al.2025),the article title has been wrongly captured.Te article title should be corrected from:of butisanstar and clopyralid herbicides on Gos-sypium hirsutum L.growth:insights from a pot experiment to:Residual efects of butisanstar and clopyralid herbi-cides on Gossypium hirsutum L.growth:insights from a pot experiment Te original article(Soltani Toularoud et al.2025)has been updated.Te publisher apologizes to the authors and readers for the inconvenience caused.展开更多
Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current r...Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current research on the anti-penetration of aramid fabrics mostly focuses unilaterally on the structure and performance of aramid fabrics or the shape and size of projectiles,with fewer studies on the coupled effect of both on ballistic performance.This study analyzes how the coupling relationship(or size effect)between the projectile and fiber bundle dimensions affects the fabric ballistic performance from a mesoscopic scale perspective.Taking plain weave aramid fabric as the research object,considering different diameter projectiles,through a large number of ballistic impact tests and numerical simulations,parameters such as ballistic limit velocity,average energy absorption of fabric,and specific energy absorption ratio(average energy absorption of fabric divided by projectile cross-sectional area)are obtained for ballistic performance analysis.The influence law of projectile size on the ballistic performance of high-performance fabrics is as follows:The relative range of fitted ballistic limit velocity at different target positions gradually decreases and then stabilizes as the projectile diameter increases,indicating that the fabric structure effect gradually disappears at a projectile diameter of 12 mm;The average ballistic limit velocity at three impact positions,P1,P2,and P3,provides the corresponding ballistic limit velocity for 1000D aramid fabric,which increases with projectile diameter but the rate of increase slows down at an inflection point,which in this study occurs where the fabric structure effect nearly disappears at a projectile diameter of 12 mm;The energy absorption ratio increases and then decreases as the projectile diameter increases from 4 mm to 20 mm,reaching a peak at the diameter of 12 mm due to the gradual disappearance of the fabric structural effect.The projectile diameter of 12 mm corresponds to the coupling size of 11.159,which provides a size design reference for the macroscopic-based continuum models of aramid plain weave fabrics.展开更多
This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectil...This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectiles,these plates tend to fail through adiabatic shear plugging which significantly reduces their ballistic resistance.To address this effect,an approach for determining effective thickness was defined and incorporated into the predictive model.Ballistic impact tests were performed to assess the modification's validity,in which ARMOX 500T steel plates were subjected to perpendicular impacts from 7.62×39 mm steel-cored rounds under various velocities.Frequent target failure by soft plugging was observed,as well as the brittle shatter of the hard steel core.Key properties of the recovered plugs including their mass,length and diameter were measured and reported along with the projectiles'residual velocities.Additionally,independent data from the open literature were included in the analysis for further validation.The original Forrestal-Warren model and the novel effective thickness modification were then used to establish the relationship between impact and residual velocities,as well as to determine the ballistic limit velocity.The comparison revealed that the proposed approach significantly improves the model's accuracy,showing a strong correlation with experimental data and reducing deviations to within a few percent.This enhancement highlights the potential of the effective thickness term,which could also be applied to other predictive models to extend their applicability range.Further exploration into other armor steels and impact conditions is recommended to assess the method's versatility.展开更多
Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting t...Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting their potential applications.Therefore,it is imperative to study the creation of lowfrequency signals using antennas with suitable dimensions.In contrast to conventional mechanical antenna techniques,our study generates low-frequency signals in the spatial domain utilizing the principle of the Doppler effect.We also defines the antenna array architecture,the timing sequency,and the radiating element signal waveform,and provides experimental prototypes including 8/64 antennas based on earlier research.In the conducted experiments,121 MHz,40 MHz,and 10 kHz composite signals are generated by 156 MHz radiating element signals.The composite signal spectrum matches the simulations,proving our low-frequency signal generating method works.This holds significant implications for research on generating low-frequency signals with small-sized antennas.展开更多
The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process ...The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process greatly influences the evolution of confined blast loading and the subsequent structural response,which is crucial in confined blast scenarios.Given the complex nature of the reaction process,accurate analysis of the afterburning effect remains challenging.Previous studies have either overlooked the mechanisms of detonation product combustion or failed to provide experimental validation.This study introduces a three-dimensional model to effectively characterize the combustion of detonation products.The model integrates chemical reaction source terms into the governing equations to consider the combustion processes.Numerical simulations and experimental tests were conducted to analyze the combustion and energy release from the detonation products of fuel-rich explosives in confined spaces.Approximately 50%of the energy was released during the combustion of detonation products in a confined TNT explosion.Although the combustion of these products was much slower than the detonation process,it aligned with the dynamic response of the structure,which enhanced the explosive yield.Excluding afterburning from the analysis reduced the center-point deformation of the structure by 30%.Following the inclusion of afterburning,the simulated quasistatic pressure increased by approximately 45%.Subsequent comparisons highlighted the merits of the proposed approach over conventional methods.This approach eliminates the reliance on empirical parameters,such as the amount and rate of energy release during afterburning,thereby laying the foundation for understanding load evolution in more complex environments,such as ships,buildings,and underground tunnels.展开更多
Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical cha...Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical charges on the tunnel blast wave loads and to develop a quantitative calculation method, this study carried out experimental and numerical research. Initially, external explosion experiments were conducted using both 35 kg spherical charges and cylindrical charges with aspect ratio of 4.8 at two different distances from the tunnel entrance. Comparative analysis of the blast wave parameters in the tunnel revealed that the explosive equivalent of the cylindrical charges was significantly higher than that of the spherical charges. To address this, an equivalent coefficient κ based on the spherical charges was proposed for the cylindrical charges. Subsequently, numerical simulations were conducted for the experimental conditions, and the numerical simulation results match the experiments well. Through numerical calculations, the reliability of the equivalent coefficient κ under the experimental conditions was verified, and comparison analysis indicated that the explosion energy of cylindrical charges spreads more radially, resulting in more explosion energy entering the tunnel, which is the fundamental reason for the increase in tunnel blast wave loads. Additionally, analyzing the explosion energy ratio entering the tunnel is an effective method for calculating the equivalent coefficient κ. Finally, through more than one hundred sets of numerical calculation results, the impact of the proportional distance λ and the ratio of charge mass to the tunnel cross-section dimension φ on the equivalence coefficients κ was investigated. An empirical formula for the equivalence coefficient κ was derived through fitting, and the accuracy of the formula was validated through literature experimental results. The research findings of this paper will provide valuable guidance for the calculation of blast wave loads in tunnel.展开更多
The geometric configurations of binuclear Zinc( complex Zn2[(n-Bu)2NCSS]4 and the ligand Na[(n-Bu)2 NCSS] have been optimized by B3LYP quantum chemical method. The electronic structures have been performed by density ...The geometric configurations of binuclear Zinc( complex Zn2[(n-Bu)2NCSS]4 and the ligand Na[(n-Bu)2 NCSS] have been optimized by B3LYP quantum chemical method. The electronic structures have been performed by density functional theory at B3LYP/6-31G* level. The electronic spectrums of the complex and ligand were calculated by ZINDO/S-CIS method. It is indicated from the calculation that: (1) The coordination effect of bridging ligand is bigger than that of chelating one, and the bridging ligands also translate more charge to Zn than the chelating one. (2) The calculated results about electronic spectrums are similarly to experimental measurement, and farther explain that absorption band at λ=267 nm of complex is assigned to two n → π* transitions :one arising from the bridging ligands and the another mainly arising from the chelating ligands;but absorption band at λ=236 nm of complex is assigned to π → π* transition which the electron mainly translates from the bridging ligands to the chelating ligands. (3) By consideration of delocalization and polar effects in coordination, the charge transfer from ligand to metal decreases the π-π and p-π conjugation effects in the chromophore group NCS2 and to increase the energy needed for the π → π* and n → π* transitions, and results in the absorption bands shifting towards the short wavelength direction.展开更多
To optimize the technology of on-line detection technology and automatic control system,the fresh turnip harvested in this year as test material,by analyzing the results of single factor experiment,heating temperature...To optimize the technology of on-line detection technology and automatic control system,the fresh turnip harvested in this year as test material,by analyzing the results of single factor experiment,heating temperature(60-80℃),vacuum in the warehouse(3 000-4 000 Pa),and material thickness(4-10 mm)were used as main test factors.Taking dehydration rate,rehydration rate,and VC mass ratio of dried product as test indexes,and using the quadratic general rotary unitized design approach,the influence and change law of far-infrared vacuum drying on drying turnip was studied.Analysis of interaction effects between the factors and the regression model,the regression equation was established,and the objective function optimization,the integrated balance method were adopted to identify the optimal conditions:the vacuum was 3000 Pa,the heating temperature was 70℃,and the material thickness was 7 mm.Under these conditions,the dehydration rate of dried turnip products was 25.23 g/(m2·h),VC mass ratio was2.05 mg/g,and the optimal value of rehydration ratio was 3.95.Finally,the turnip dry products were observed by SESM and the results were analyzed.The result showed that the cell wall breakage rate,cell deformation rate,and low profile shrinkage rate of turnip dried by infrared vacuum were lower;the surface smoothness preservation rate was higher;the cell tissue preservation rate was more than 80%,and the cell breakage and distortion was less.And the microscopic morphology of cell was kept well.Under these conditions,the original organization and structure of the sample were truly reflected,the better drying effect was achieved,the sensory quality of dried products was guaranteed.This study provide a technical basis for the intelligent far-infrared vacuum drying technology applying for fast drying of high moisture materials and a reference for improving the quality of the far-infrared vacuum drying of turnip.展开更多
This paper considers the parameters and reliability characteristics estimation problem of the generalized Rayleigh distribution under progressively Type-Ⅱ censoring with random removals,that is,the number of units re...This paper considers the parameters and reliability characteristics estimation problem of the generalized Rayleigh distribution under progressively Type-Ⅱ censoring with random removals,that is,the number of units removed at each failure time follows the binomial distribution.The maximum likelihood estimation and the Bayesian estimation are derived.In the meanwhile,through a great quantity of Monte Carlo simulation experiments we have studied different hyperparameters as well as symmetric and asymmetric loss functions in the Bayesian estimation procedure.A real industrial case is presented to justify and illustrate the proposed methods.We also investigate the expected experimentation time and discuss the influence of the parameters on the termination point to complete the censoring test.展开更多
In the late Qing Dynasty,after the western modern agricultural science and technology were introduced into China,agricultural experiment farms of every degree were set up for the sake of agricultural education and usa...In the late Qing Dynasty,after the western modern agricultural science and technology were introduced into China,agricultural experiment farms of every degree were set up for the sake of agricultural education and usage.The agricultural experiment farms included both big ones and small ones,supported by either government or private finance.Despite of all the difficulties,research work was done on the farms.On the big and normal ones,the experiments contained modern elements,including chemical fertilizer,machines,good breeds of plants and animals,sericulture and forestry.Though the experiments belonged to primary level and had no much effect on the agriculture of that time,it was gained by effort,in the hard times of the late Qing Dynasty.The found of the agricultural experiment farms showed the change of Chinese agriculture from traditional into modern one.展开更多
基金supported by the National Key R&D Program of China(2022YFA1602200)the International Partnership Program of the Chinese Academy of Sciences(211134KYSB20200057).
文摘The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.
基金Project(2022-Major-14)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated floating slabs longitudinally interconnected with magnesium ammonium phosphate concrete(MPC).This study investigated the dynamic performance of the structure.We constructd a full-scale indoor experimental model to scrutinize the disparities in the impact performance between a longitudinally connected floating slab track and its longitudinally disconnected counterpart.Additionally,a long-term fatigue experiment was conducted to assess the impact performance of longitudinally connected floating slab tracks under fatigue loading.The findings are described in the following.1)The new structure effectively suppresses ground vibrations,exhibiting a well-balanced energy distribution profile.However,the imposition of fatigue loading leads to a reduction in the damping performance of the steel spring damping system,thereby reducing its capacity to attenuate structural vibrations and leading to an increase in ground vibration energy;2)After 107 loading cycles,the attenuation rate of the vibration acceleration for the MPC increases by 171.9%.Conversely,at the corresponding disconnected location,the attenuation rate of ground vibration acceleration decreases by 65.6%.In conclusion,longitudinally connected floating slab tracks exhibit superior vibration reduction performance.While the vibration reduction performance of longitudinally connected floating slab tracks may diminish to some extent during long-term service,these tracks continue to meet specific vibration reduction requirements.
文摘Correction:J Cotton Res 8,27(2025)https://doi.org/10.1186/s42397-025-00228-y During the publication process of the original article(Soltani Toularoud et al.2025),the article title has been wrongly captured.Te article title should be corrected from:of butisanstar and clopyralid herbicides on Gos-sypium hirsutum L.growth:insights from a pot experiment to:Residual efects of butisanstar and clopyralid herbi-cides on Gossypium hirsutum L.growth:insights from a pot experiment Te original article(Soltani Toularoud et al.2025)has been updated.Te publisher apologizes to the authors and readers for the inconvenience caused.
基金National Natural Science Foundation of China(Grant Nos.12172179,11802141 and U2341244)National Natural Science Foundation for Young Scientists of China(Grant No.12202207)+3 种基金China Postdoctoral Science Foundation(Grant No.2022M711623)Natural Science Foundation of Jiangsu Province(Grant No.BK20220968)Open Funds for Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education(Grant No.CJ202201)Open Funds for Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province(Grant No.22kfgk03)。
文摘Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current research on the anti-penetration of aramid fabrics mostly focuses unilaterally on the structure and performance of aramid fabrics or the shape and size of projectiles,with fewer studies on the coupled effect of both on ballistic performance.This study analyzes how the coupling relationship(or size effect)between the projectile and fiber bundle dimensions affects the fabric ballistic performance from a mesoscopic scale perspective.Taking plain weave aramid fabric as the research object,considering different diameter projectiles,through a large number of ballistic impact tests and numerical simulations,parameters such as ballistic limit velocity,average energy absorption of fabric,and specific energy absorption ratio(average energy absorption of fabric divided by projectile cross-sectional area)are obtained for ballistic performance analysis.The influence law of projectile size on the ballistic performance of high-performance fabrics is as follows:The relative range of fitted ballistic limit velocity at different target positions gradually decreases and then stabilizes as the projectile diameter increases,indicating that the fabric structure effect gradually disappears at a projectile diameter of 12 mm;The average ballistic limit velocity at three impact positions,P1,P2,and P3,provides the corresponding ballistic limit velocity for 1000D aramid fabric,which increases with projectile diameter but the rate of increase slows down at an inflection point,which in this study occurs where the fabric structure effect nearly disappears at a projectile diameter of 12 mm;The energy absorption ratio increases and then decreases as the projectile diameter increases from 4 mm to 20 mm,reaching a peak at the diameter of 12 mm due to the gradual disappearance of the fabric structural effect.The projectile diameter of 12 mm corresponds to the coupling size of 11.159,which provides a size design reference for the macroscopic-based continuum models of aramid plain weave fabrics.
基金supported by the Ministry of Science,Technological Development and Innovation of the Republic of Serbia,through the Contract no.451-03-65/2024-03/200105
文摘This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectiles,these plates tend to fail through adiabatic shear plugging which significantly reduces their ballistic resistance.To address this effect,an approach for determining effective thickness was defined and incorporated into the predictive model.Ballistic impact tests were performed to assess the modification's validity,in which ARMOX 500T steel plates were subjected to perpendicular impacts from 7.62×39 mm steel-cored rounds under various velocities.Frequent target failure by soft plugging was observed,as well as the brittle shatter of the hard steel core.Key properties of the recovered plugs including their mass,length and diameter were measured and reported along with the projectiles'residual velocities.Additionally,independent data from the open literature were included in the analysis for further validation.The original Forrestal-Warren model and the novel effective thickness modification were then used to establish the relationship between impact and residual velocities,as well as to determine the ballistic limit velocity.The comparison revealed that the proposed approach significantly improves the model's accuracy,showing a strong correlation with experimental data and reducing deviations to within a few percent.This enhancement highlights the potential of the effective thickness term,which could also be applied to other predictive models to extend their applicability range.Further exploration into other armor steels and impact conditions is recommended to assess the method's versatility.
基金Science and Technology Project of Aerospace Information Research Institute,Chinese Academy of Sciences(Y910340Z2F)Science and Technology Project of BBEF(E3E2010201)。
文摘Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting their potential applications.Therefore,it is imperative to study the creation of lowfrequency signals using antennas with suitable dimensions.In contrast to conventional mechanical antenna techniques,our study generates low-frequency signals in the spatial domain utilizing the principle of the Doppler effect.We also defines the antenna array architecture,the timing sequency,and the radiating element signal waveform,and provides experimental prototypes including 8/64 antennas based on earlier research.In the conducted experiments,121 MHz,40 MHz,and 10 kHz composite signals are generated by 156 MHz radiating element signals.The composite signal spectrum matches the simulations,proving our low-frequency signal generating method works.This holds significant implications for research on generating low-frequency signals with small-sized antennas.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171318 and 12202329)Joint Foundation of the Ministry of Education(Grant No.8091B022105)。
文摘The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process greatly influences the evolution of confined blast loading and the subsequent structural response,which is crucial in confined blast scenarios.Given the complex nature of the reaction process,accurate analysis of the afterburning effect remains challenging.Previous studies have either overlooked the mechanisms of detonation product combustion or failed to provide experimental validation.This study introduces a three-dimensional model to effectively characterize the combustion of detonation products.The model integrates chemical reaction source terms into the governing equations to consider the combustion processes.Numerical simulations and experimental tests were conducted to analyze the combustion and energy release from the detonation products of fuel-rich explosives in confined spaces.Approximately 50%of the energy was released during the combustion of detonation products in a confined TNT explosion.Although the combustion of these products was much slower than the detonation process,it aligned with the dynamic response of the structure,which enhanced the explosive yield.Excluding afterburning from the analysis reduced the center-point deformation of the structure by 30%.Following the inclusion of afterburning,the simulated quasistatic pressure increased by approximately 45%.Subsequent comparisons highlighted the merits of the proposed approach over conventional methods.This approach eliminates the reliance on empirical parameters,such as the amount and rate of energy release during afterburning,thereby laying the foundation for understanding load evolution in more complex environments,such as ships,buildings,and underground tunnels.
文摘Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical charges on the tunnel blast wave loads and to develop a quantitative calculation method, this study carried out experimental and numerical research. Initially, external explosion experiments were conducted using both 35 kg spherical charges and cylindrical charges with aspect ratio of 4.8 at two different distances from the tunnel entrance. Comparative analysis of the blast wave parameters in the tunnel revealed that the explosive equivalent of the cylindrical charges was significantly higher than that of the spherical charges. To address this, an equivalent coefficient κ based on the spherical charges was proposed for the cylindrical charges. Subsequently, numerical simulations were conducted for the experimental conditions, and the numerical simulation results match the experiments well. Through numerical calculations, the reliability of the equivalent coefficient κ under the experimental conditions was verified, and comparison analysis indicated that the explosion energy of cylindrical charges spreads more radially, resulting in more explosion energy entering the tunnel, which is the fundamental reason for the increase in tunnel blast wave loads. Additionally, analyzing the explosion energy ratio entering the tunnel is an effective method for calculating the equivalent coefficient κ. Finally, through more than one hundred sets of numerical calculation results, the impact of the proportional distance λ and the ratio of charge mass to the tunnel cross-section dimension φ on the equivalence coefficients κ was investigated. An empirical formula for the equivalence coefficient κ was derived through fitting, and the accuracy of the formula was validated through literature experimental results. The research findings of this paper will provide valuable guidance for the calculation of blast wave loads in tunnel.
文摘The geometric configurations of binuclear Zinc( complex Zn2[(n-Bu)2NCSS]4 and the ligand Na[(n-Bu)2 NCSS] have been optimized by B3LYP quantum chemical method. The electronic structures have been performed by density functional theory at B3LYP/6-31G* level. The electronic spectrums of the complex and ligand were calculated by ZINDO/S-CIS method. It is indicated from the calculation that: (1) The coordination effect of bridging ligand is bigger than that of chelating one, and the bridging ligands also translate more charge to Zn than the chelating one. (2) The calculated results about electronic spectrums are similarly to experimental measurement, and farther explain that absorption band at λ=267 nm of complex is assigned to two n → π* transitions :one arising from the bridging ligands and the another mainly arising from the chelating ligands;but absorption band at λ=236 nm of complex is assigned to π → π* transition which the electron mainly translates from the bridging ligands to the chelating ligands. (3) By consideration of delocalization and polar effects in coordination, the charge transfer from ligand to metal decreases the π-π and p-π conjugation effects in the chromophore group NCS2 and to increase the energy needed for the π → π* and n → π* transitions, and results in the absorption bands shifting towards the short wavelength direction.
基金the National Science and Technology Support Program(2014BAD06B00)Heilongjiang Province,the Application of Technology Research and Development Program(GA15B402)Heilongjiang Province,the New Century Outstanding Talent Training Program(1155-NCET-012)
文摘To optimize the technology of on-line detection technology and automatic control system,the fresh turnip harvested in this year as test material,by analyzing the results of single factor experiment,heating temperature(60-80℃),vacuum in the warehouse(3 000-4 000 Pa),and material thickness(4-10 mm)were used as main test factors.Taking dehydration rate,rehydration rate,and VC mass ratio of dried product as test indexes,and using the quadratic general rotary unitized design approach,the influence and change law of far-infrared vacuum drying on drying turnip was studied.Analysis of interaction effects between the factors and the regression model,the regression equation was established,and the objective function optimization,the integrated balance method were adopted to identify the optimal conditions:the vacuum was 3000 Pa,the heating temperature was 70℃,and the material thickness was 7 mm.Under these conditions,the dehydration rate of dried turnip products was 25.23 g/(m2·h),VC mass ratio was2.05 mg/g,and the optimal value of rehydration ratio was 3.95.Finally,the turnip dry products were observed by SESM and the results were analyzed.The result showed that the cell wall breakage rate,cell deformation rate,and low profile shrinkage rate of turnip dried by infrared vacuum were lower;the surface smoothness preservation rate was higher;the cell tissue preservation rate was more than 80%,and the cell breakage and distortion was less.And the microscopic morphology of cell was kept well.Under these conditions,the original organization and structure of the sample were truly reflected,the better drying effect was achieved,the sensory quality of dried products was guaranteed.This study provide a technical basis for the intelligent far-infrared vacuum drying technology applying for fast drying of high moisture materials and a reference for improving the quality of the far-infrared vacuum drying of turnip.
基金supported by the National Statistical Science Research Project of China(2019LZ32)
文摘This paper considers the parameters and reliability characteristics estimation problem of the generalized Rayleigh distribution under progressively Type-Ⅱ censoring with random removals,that is,the number of units removed at each failure time follows the binomial distribution.The maximum likelihood estimation and the Bayesian estimation are derived.In the meanwhile,through a great quantity of Monte Carlo simulation experiments we have studied different hyperparameters as well as symmetric and asymmetric loss functions in the Bayesian estimation procedure.A real industrial case is presented to justify and illustrate the proposed methods.We also investigate the expected experimentation time and discuss the influence of the parameters on the termination point to complete the censoring test.
文摘In the late Qing Dynasty,after the western modern agricultural science and technology were introduced into China,agricultural experiment farms of every degree were set up for the sake of agricultural education and usage.The agricultural experiment farms included both big ones and small ones,supported by either government or private finance.Despite of all the difficulties,research work was done on the farms.On the big and normal ones,the experiments contained modern elements,including chemical fertilizer,machines,good breeds of plants and animals,sericulture and forestry.Though the experiments belonged to primary level and had no much effect on the agriculture of that time,it was gained by effort,in the hard times of the late Qing Dynasty.The found of the agricultural experiment farms showed the change of Chinese agriculture from traditional into modern one.