A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevaryin...A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.展开更多
The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process ...The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process greatly influences the evolution of confined blast loading and the subsequent structural response,which is crucial in confined blast scenarios.Given the complex nature of the reaction process,accurate analysis of the afterburning effect remains challenging.Previous studies have either overlooked the mechanisms of detonation product combustion or failed to provide experimental validation.This study introduces a three-dimensional model to effectively characterize the combustion of detonation products.The model integrates chemical reaction source terms into the governing equations to consider the combustion processes.Numerical simulations and experimental tests were conducted to analyze the combustion and energy release from the detonation products of fuel-rich explosives in confined spaces.Approximately 50%of the energy was released during the combustion of detonation products in a confined TNT explosion.Although the combustion of these products was much slower than the detonation process,it aligned with the dynamic response of the structure,which enhanced the explosive yield.Excluding afterburning from the analysis reduced the center-point deformation of the structure by 30%.Following the inclusion of afterburning,the simulated quasistatic pressure increased by approximately 45%.Subsequent comparisons highlighted the merits of the proposed approach over conventional methods.This approach eliminates the reliance on empirical parameters,such as the amount and rate of energy release during afterburning,thereby laying the foundation for understanding load evolution in more complex environments,such as ships,buildings,and underground tunnels.展开更多
This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectil...This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectiles,these plates tend to fail through adiabatic shear plugging which significantly reduces their ballistic resistance.To address this effect,an approach for determining effective thickness was defined and incorporated into the predictive model.Ballistic impact tests were performed to assess the modification's validity,in which ARMOX 500T steel plates were subjected to perpendicular impacts from 7.62×39 mm steel-cored rounds under various velocities.Frequent target failure by soft plugging was observed,as well as the brittle shatter of the hard steel core.Key properties of the recovered plugs including their mass,length and diameter were measured and reported along with the projectiles'residual velocities.Additionally,independent data from the open literature were included in the analysis for further validation.The original Forrestal-Warren model and the novel effective thickness modification were then used to establish the relationship between impact and residual velocities,as well as to determine the ballistic limit velocity.The comparison revealed that the proposed approach significantly improves the model's accuracy,showing a strong correlation with experimental data and reducing deviations to within a few percent.This enhancement highlights the potential of the effective thickness term,which could also be applied to other predictive models to extend their applicability range.Further exploration into other armor steels and impact conditions is recommended to assess the method's versatility.展开更多
Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical cha...Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical charges on the tunnel blast wave loads and to develop a quantitative calculation method, this study carried out experimental and numerical research. Initially, external explosion experiments were conducted using both 35 kg spherical charges and cylindrical charges with aspect ratio of 4.8 at two different distances from the tunnel entrance. Comparative analysis of the blast wave parameters in the tunnel revealed that the explosive equivalent of the cylindrical charges was significantly higher than that of the spherical charges. To address this, an equivalent coefficient κ based on the spherical charges was proposed for the cylindrical charges. Subsequently, numerical simulations were conducted for the experimental conditions, and the numerical simulation results match the experiments well. Through numerical calculations, the reliability of the equivalent coefficient κ under the experimental conditions was verified, and comparison analysis indicated that the explosion energy of cylindrical charges spreads more radially, resulting in more explosion energy entering the tunnel, which is the fundamental reason for the increase in tunnel blast wave loads. Additionally, analyzing the explosion energy ratio entering the tunnel is an effective method for calculating the equivalent coefficient κ. Finally, through more than one hundred sets of numerical calculation results, the impact of the proportional distance λ and the ratio of charge mass to the tunnel cross-section dimension φ on the equivalence coefficients κ was investigated. An empirical formula for the equivalence coefficient κ was derived through fitting, and the accuracy of the formula was validated through literature experimental results. The research findings of this paper will provide valuable guidance for the calculation of blast wave loads in tunnel.展开更多
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime...To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.展开更多
Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is w...Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is widely used in mineral resource exploration due to its direct correlation with underground electrochemical gradients.This paper presented the design and construction of an experimental platform based on a multi-channel SP monitoring system.The proposed platform was used to monitor the anodizing corrosion process of different metal blocks from a laboratory perspective,record the real-time SP signal generated by the redox reaction,as well as investigate the geobattery mechanism associated with the natural polarization process of metal mineral resources.The experimental results demonstrate that the constructed SP monitoring platform effectively captures time-series SP signals and provides direct laboratory evidence for the geobattery model.The measured SP data were quantitatively interpreted using the simulated annealing algorithm,and the inversion results closely match the real model.This finding highlights the potential of the SP method as a promising tool for determining the location and spatial distribution of underground polarizers.The study holds reference value for the exploration and exploitation of mineral resources in both terrestrial and marine environments.展开更多
In recent years,rockburst have gained significant attention as a crucial topic in rock engineering.Strain andfault-slip rockburst are two common types that occur frequently and cause substantial damage.The objective o...In recent years,rockburst have gained significant attention as a crucial topic in rock engineering.Strain andfault-slip rockburst are two common types that occur frequently and cause substantial damage.The objective of thisreview is to conduct a comprehensive study on the experiments and failure mechanisms of strain and fault-slip rockburst.Firstly,the article analyzes the evolving trends in experimental research on rockburst in the past decade,highlightingmechanical properties and failure modes as the primary research focuses in understanding rockburst mechanisms.Subsequently,it provides an overview of the experimental techniques and methods employed for studying both types ofrockburst.Then,with a focus on the mechanical properties and failure modes,the article conducts an extensive analysisof the failure mechanisms associated with strain and fault-slip rockburst.By analyzing experimental data and observingthe failure characteristics of samples,it discusses the variations and common features exhibited by these two types ofrockburst under various test conditions.This analysis is of paramount importance in revealing the causes of rockburstformation and development,as well as in predicting rockburst trends and assessing associated risks.Lastly,thelimitations of current rockburst experiments and future research directions are discussed,followed by a comprehensivesummary of the entire article.展开更多
The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled h...The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.展开更多
In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated fl...In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated floating slabs longitudinally interconnected with magnesium ammonium phosphate concrete(MPC).This study investigated the dynamic performance of the structure.We constructd a full-scale indoor experimental model to scrutinize the disparities in the impact performance between a longitudinally connected floating slab track and its longitudinally disconnected counterpart.Additionally,a long-term fatigue experiment was conducted to assess the impact performance of longitudinally connected floating slab tracks under fatigue loading.The findings are described in the following.1)The new structure effectively suppresses ground vibrations,exhibiting a well-balanced energy distribution profile.However,the imposition of fatigue loading leads to a reduction in the damping performance of the steel spring damping system,thereby reducing its capacity to attenuate structural vibrations and leading to an increase in ground vibration energy;2)After 107 loading cycles,the attenuation rate of the vibration acceleration for the MPC increases by 171.9%.Conversely,at the corresponding disconnected location,the attenuation rate of ground vibration acceleration decreases by 65.6%.In conclusion,longitudinally connected floating slab tracks exhibit superior vibration reduction performance.While the vibration reduction performance of longitudinally connected floating slab tracks may diminish to some extent during long-term service,these tracks continue to meet specific vibration reduction requirements.展开更多
Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting t...Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting their potential applications.Therefore,it is imperative to study the creation of lowfrequency signals using antennas with suitable dimensions.In contrast to conventional mechanical antenna techniques,our study generates low-frequency signals in the spatial domain utilizing the principle of the Doppler effect.We also defines the antenna array architecture,the timing sequency,and the radiating element signal waveform,and provides experimental prototypes including 8/64 antennas based on earlier research.In the conducted experiments,121 MHz,40 MHz,and 10 kHz composite signals are generated by 156 MHz radiating element signals.The composite signal spectrum matches the simulations,proving our low-frequency signal generating method works.This holds significant implications for research on generating low-frequency signals with small-sized antennas.展开更多
Correction:J Cotton Res 8,27(2025)https://doi.org/10.1186/s42397-025-00228-y During the publication process of the original article(Soltani Toularoud et al.2025),the article title has been wrongly captured.Te article ...Correction:J Cotton Res 8,27(2025)https://doi.org/10.1186/s42397-025-00228-y During the publication process of the original article(Soltani Toularoud et al.2025),the article title has been wrongly captured.Te article title should be corrected from:of butisanstar and clopyralid herbicides on Gos-sypium hirsutum L.growth:insights from a pot experiment to:Residual efects of butisanstar and clopyralid herbi-cides on Gossypium hirsutum L.growth:insights from a pot experiment Te original article(Soltani Toularoud et al.2025)has been updated.Te publisher apologizes to the authors and readers for the inconvenience caused.展开更多
Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current r...Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current research on the anti-penetration of aramid fabrics mostly focuses unilaterally on the structure and performance of aramid fabrics or the shape and size of projectiles,with fewer studies on the coupled effect of both on ballistic performance.This study analyzes how the coupling relationship(or size effect)between the projectile and fiber bundle dimensions affects the fabric ballistic performance from a mesoscopic scale perspective.Taking plain weave aramid fabric as the research object,considering different diameter projectiles,through a large number of ballistic impact tests and numerical simulations,parameters such as ballistic limit velocity,average energy absorption of fabric,and specific energy absorption ratio(average energy absorption of fabric divided by projectile cross-sectional area)are obtained for ballistic performance analysis.The influence law of projectile size on the ballistic performance of high-performance fabrics is as follows:The relative range of fitted ballistic limit velocity at different target positions gradually decreases and then stabilizes as the projectile diameter increases,indicating that the fabric structure effect gradually disappears at a projectile diameter of 12 mm;The average ballistic limit velocity at three impact positions,P1,P2,and P3,provides the corresponding ballistic limit velocity for 1000D aramid fabric,which increases with projectile diameter but the rate of increase slows down at an inflection point,which in this study occurs where the fabric structure effect nearly disappears at a projectile diameter of 12 mm;The energy absorption ratio increases and then decreases as the projectile diameter increases from 4 mm to 20 mm,reaching a peak at the diameter of 12 mm due to the gradual disappearance of the fabric structural effect.The projectile diameter of 12 mm corresponds to the coupling size of 11.159,which provides a size design reference for the macroscopic-based continuum models of aramid plain weave fabrics.展开更多
Excessive vibrations inside buildings in the Lihu New Village caused by the Shenzhen Metro Line 2 underground railway were investigated by conducting analyses of the tunnel,the track irregularities,the stiffness of th...Excessive vibrations inside buildings in the Lihu New Village caused by the Shenzhen Metro Line 2 underground railway were investigated by conducting analyses of the tunnel,the track irregularities,the stiffness of the fastening system,and the vibrations of the track system and the building at different speeds.A numerical simulation based on the dynamic coupling theory of the vehicle-track system was used to verify the experimental results.Suitable countermeasures were investigated.The results show that rail corrugation is the primary reason for the excessive vibration,and an increase in the stiffness of the vertical fastening system is the secondary reason.The solution was to eliminate the rail corrugation using rail grinding and decrease the vertical stiffness by changing the fastening system.The results of this study provide references for solving vibration problems caused by rail lines.展开更多
Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to ex...Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to explore deformation characteristics and permeability properties and provide some parameters to character the rock under unloading conditions.A series of triaxial tests with permeability and acoustic emission signal measurement were conducted under the path of confining pressure unloading prior to the peak stress.Deformation behavior and permeability evolution in the whole stress–strain process based on these experimental results were analyzed in detail.Results demonstrate that,under the confining pressure unloading conditions,a good correspondence relationship among the stress–axial strain curve,permeability–axial strain curve and acoustic emission activity pattern was obtained.After the confining pressure was unloaded,the radial strain grew much faster than the axial strain,which induced the volumetric strain growing rapidly.All failures under confining pressure unloading conditions featured brittle shear failure with a single macro shear rupture surface.With the decrease in deformation modulus during the confining pressure unloading process,the damage variable gradually increases,indicating that confining pressure unloading was a process of damage accumulation and strength degradation.From the entire loading and unloading process,there was a certain positive correlation between the permeability and volumetric strain.展开更多
In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups o...In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups of agent were tested,respectively.It is found that these two experimental design methods show drawbacks,that is,the amount of agent is difficult to determine,and the results are not fully optimized.Therefore,multiple regression experimental method was used to design experimental formula.By randomly selecting arbitrary agent with the amount within the recommended range,17 groups of drilling fluid formula were designed,and the plastic viscosity of each experiment formula was measured.Set plastic viscosity as the objective function,through multiple regressions,then quadratic regression model is obtained,whose correlation coefficient meets the requirement.Set target values of plastic viscosity to be 18,20 and 22 mPa·s,respectively,with the trial method,5 drilling fluid formulas are obtained with accuracy of 0.000 3,0.000 1 and 0.000 3.Arbitrarily select target value of each of the two groups under the formula for experimental verification of drilling fluid,then the measurement errors between theoretical and tested plastic viscosity are less than 5%,confirming that regression model can be applied to optimizing the circulating of plastic-foam drilling fluid viscosity.In accordance with the precision of different formulations of drilling fluid for other constraints,the methods result in the optimization of the circulating micro-bubble drilling fluid parameters.展开更多
In the present work, the gas flow pressure drop and gas–solid heat transfer characteristics in sinter bed layer of vertical tank were studied experimentally on the basis of the homemade experimental setup. The gas fl...In the present work, the gas flow pressure drop and gas–solid heat transfer characteristics in sinter bed layer of vertical tank were studied experimentally on the basis of the homemade experimental setup. The gas flow pressure drop through the sinter bed layer was measured with different gas velocity and particle diameters, as well as the sinter and air temperatures. The influences of gas superficial velocity and particle diameter on the gas flow pressure drop and gas solid heat transfer in sinter bed layer were analyzed in detail. The revised Ergun's correlation and gas solid heat transfer correlation were obtained according to the regression analysis of experimental data. It is found that, the pressure drop of unit bed layer height gradually increases as a quadratic relationship with increasing the gas superficial velocity, and decreases as an exponential relationship with the increase of sinter particle diameter. For a given sinter temperature, the heat transfer coefficient in sinter bed layer increases with increasing the gas superficial velocity, and increases with decreasing the sinter particle diameter. In addition, the heat transfer coefficient also gradually increases with increasing the sinter temperature at the same gas superficial velocity and sinter particle diameter. The mean deviations between the experimental data obtained from this work and the values calculated by the revised Ergun's correlation and the experimental heat transfer correlation are 7.22% and 4.22% respectively, showing good prediction.展开更多
The simulation of compression and fracture of charge bed in chamber is one of the key problems in the study of launch safety of gun propellant charge. A new kind of experimental device that can be used for simulation ...The simulation of compression and fracture of charge bed in chamber is one of the key problems in the study of launch safety of gun propellant charge. A new kind of experimental device that can be used for simulation is given. Its structure and operational principle are introduced. Using a semi-closed vessel as a source of compression force, the device can simulate any kind of dynamic environment in a gun propellant charge. Using the low temperature inert gas (N2) as the compression medium, the device can not only ensure that the simulation is real, but also protect the fragmentized propellant from combustion after experiment. Using the device, many simulation experiments have been accomplished, and dynamic environment of propellant fracture is acquired. With the experiments, fragmentized propellant for the compression and fracture of charge bed is obtained. Results of experiments show that the new device can be used to study the principle of the compression and fracture of charge bed.展开更多
The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow t...The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow the trajectories of a virtual leader despite communication faults considered as smooth time-varying delays dependent on the distance between the agents.Linear matrix inequalities(LMIs)-based conditions are obtained to synthesize a controller gain that guarantees stability of the synchronization error.Based on the closed-loop system,an event-triggered mechanism is designed to reduce the control law update and information exchange in order to reduce energy consumption.The proposed approach is implemented in a real platform of a fleet of unmanned aerial vehicles(UAVs)under communication faults.A comparison between a state-of-the-art technique and the proposed technique has been provided,demonstrating the performance improvement brought by the proposed approach.展开更多
This paper reviews the current status of investigation on snow accumulation on the bogies of high-speed trains(HSTs) running in snowy region. First, the background of the snow issue occurring to the HST and the contra...This paper reviews the current status of investigation on snow accumulation on the bogies of high-speed trains(HSTs) running in snowy region. First, the background of the snow issue occurring to the HST and the contra-measures for the snow issue proposed in the past decades are provided by reviewing previous studies. Next, the methodology for investigating the snow issue developed by High-Speed Train Research Center of Central South University is introduced, including the numerical simulation research platform and the experimental devices for two-phase flow wind tunnel tests. Then, effective anti-snow flow control schemes for guiding the underbody airflow and their impact on the motion and accretion of snow in the installation region of the bogies are presented. Finally, the remaining investigating challenge for the snow issue of HST and the future research with respect to the challenge are provided from an engineering application viewpoint.展开更多
基金supported in part by the Nation Natural Science Foundation of China under Grant No.52175099China Postdoctoral Science Foundation under Grant No.2020M671494Jiangsu Planned Projects for Postdoctoral Research Funds under Grant No.2020Z179。
文摘A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171318 and 12202329)Joint Foundation of the Ministry of Education(Grant No.8091B022105)。
文摘The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process greatly influences the evolution of confined blast loading and the subsequent structural response,which is crucial in confined blast scenarios.Given the complex nature of the reaction process,accurate analysis of the afterburning effect remains challenging.Previous studies have either overlooked the mechanisms of detonation product combustion or failed to provide experimental validation.This study introduces a three-dimensional model to effectively characterize the combustion of detonation products.The model integrates chemical reaction source terms into the governing equations to consider the combustion processes.Numerical simulations and experimental tests were conducted to analyze the combustion and energy release from the detonation products of fuel-rich explosives in confined spaces.Approximately 50%of the energy was released during the combustion of detonation products in a confined TNT explosion.Although the combustion of these products was much slower than the detonation process,it aligned with the dynamic response of the structure,which enhanced the explosive yield.Excluding afterburning from the analysis reduced the center-point deformation of the structure by 30%.Following the inclusion of afterburning,the simulated quasistatic pressure increased by approximately 45%.Subsequent comparisons highlighted the merits of the proposed approach over conventional methods.This approach eliminates the reliance on empirical parameters,such as the amount and rate of energy release during afterburning,thereby laying the foundation for understanding load evolution in more complex environments,such as ships,buildings,and underground tunnels.
基金supported by the Ministry of Science,Technological Development and Innovation of the Republic of Serbia,through the Contract no.451-03-65/2024-03/200105
文摘This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectiles,these plates tend to fail through adiabatic shear plugging which significantly reduces their ballistic resistance.To address this effect,an approach for determining effective thickness was defined and incorporated into the predictive model.Ballistic impact tests were performed to assess the modification's validity,in which ARMOX 500T steel plates were subjected to perpendicular impacts from 7.62×39 mm steel-cored rounds under various velocities.Frequent target failure by soft plugging was observed,as well as the brittle shatter of the hard steel core.Key properties of the recovered plugs including their mass,length and diameter were measured and reported along with the projectiles'residual velocities.Additionally,independent data from the open literature were included in the analysis for further validation.The original Forrestal-Warren model and the novel effective thickness modification were then used to establish the relationship between impact and residual velocities,as well as to determine the ballistic limit velocity.The comparison revealed that the proposed approach significantly improves the model's accuracy,showing a strong correlation with experimental data and reducing deviations to within a few percent.This enhancement highlights the potential of the effective thickness term,which could also be applied to other predictive models to extend their applicability range.Further exploration into other armor steels and impact conditions is recommended to assess the method's versatility.
文摘Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical charges on the tunnel blast wave loads and to develop a quantitative calculation method, this study carried out experimental and numerical research. Initially, external explosion experiments were conducted using both 35 kg spherical charges and cylindrical charges with aspect ratio of 4.8 at two different distances from the tunnel entrance. Comparative analysis of the blast wave parameters in the tunnel revealed that the explosive equivalent of the cylindrical charges was significantly higher than that of the spherical charges. To address this, an equivalent coefficient κ based on the spherical charges was proposed for the cylindrical charges. Subsequently, numerical simulations were conducted for the experimental conditions, and the numerical simulation results match the experiments well. Through numerical calculations, the reliability of the equivalent coefficient κ under the experimental conditions was verified, and comparison analysis indicated that the explosion energy of cylindrical charges spreads more radially, resulting in more explosion energy entering the tunnel, which is the fundamental reason for the increase in tunnel blast wave loads. Additionally, analyzing the explosion energy ratio entering the tunnel is an effective method for calculating the equivalent coefficient κ. Finally, through more than one hundred sets of numerical calculation results, the impact of the proportional distance λ and the ratio of charge mass to the tunnel cross-section dimension φ on the equivalence coefficients κ was investigated. An empirical formula for the equivalence coefficient κ was derived through fitting, and the accuracy of the formula was validated through literature experimental results. The research findings of this paper will provide valuable guidance for the calculation of blast wave loads in tunnel.
文摘To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.
基金Project(42174170)supported by the National Natural Science Foundation of China。
文摘Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is widely used in mineral resource exploration due to its direct correlation with underground electrochemical gradients.This paper presented the design and construction of an experimental platform based on a multi-channel SP monitoring system.The proposed platform was used to monitor the anodizing corrosion process of different metal blocks from a laboratory perspective,record the real-time SP signal generated by the redox reaction,as well as investigate the geobattery mechanism associated with the natural polarization process of metal mineral resources.The experimental results demonstrate that the constructed SP monitoring platform effectively captures time-series SP signals and provides direct laboratory evidence for the geobattery model.The measured SP data were quantitatively interpreted using the simulated annealing algorithm,and the inversion results closely match the real model.This finding highlights the potential of the SP method as a promising tool for determining the location and spatial distribution of underground polarizers.The study holds reference value for the exploration and exploitation of mineral resources in both terrestrial and marine environments.
基金Project(52227901)supported by the National Natural Science Foundation of ChinaProject(2308085ME153)supported by the Anhui Provincial Natural Science Foundation,China+2 种基金Project(2022AH030088)supported by the University Natural Science Foundation of Anhui Province,ChinaProject(EC2022011)supported by the Foundation of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining,ChinaProject(GXXT-2022-020)supported by the University Synergy Innovation Program of Anhui Province,China。
文摘In recent years,rockburst have gained significant attention as a crucial topic in rock engineering.Strain andfault-slip rockburst are two common types that occur frequently and cause substantial damage.The objective of thisreview is to conduct a comprehensive study on the experiments and failure mechanisms of strain and fault-slip rockburst.Firstly,the article analyzes the evolving trends in experimental research on rockburst in the past decade,highlightingmechanical properties and failure modes as the primary research focuses in understanding rockburst mechanisms.Subsequently,it provides an overview of the experimental techniques and methods employed for studying both types ofrockburst.Then,with a focus on the mechanical properties and failure modes,the article conducts an extensive analysisof the failure mechanisms associated with strain and fault-slip rockburst.By analyzing experimental data and observingthe failure characteristics of samples,it discusses the variations and common features exhibited by these two types ofrockburst under various test conditions.This analysis is of paramount importance in revealing the causes of rockburstformation and development,as well as in predicting rockburst trends and assessing associated risks.Lastly,thelimitations of current rockburst experiments and future research directions are discussed,followed by a comprehensivesummary of the entire article.
基金supported by the National Key R&D Program of China(2022YFA1602200)the International Partnership Program of the Chinese Academy of Sciences(211134KYSB20200057).
文摘The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.
基金Project(2022-Major-14)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated floating slabs longitudinally interconnected with magnesium ammonium phosphate concrete(MPC).This study investigated the dynamic performance of the structure.We constructd a full-scale indoor experimental model to scrutinize the disparities in the impact performance between a longitudinally connected floating slab track and its longitudinally disconnected counterpart.Additionally,a long-term fatigue experiment was conducted to assess the impact performance of longitudinally connected floating slab tracks under fatigue loading.The findings are described in the following.1)The new structure effectively suppresses ground vibrations,exhibiting a well-balanced energy distribution profile.However,the imposition of fatigue loading leads to a reduction in the damping performance of the steel spring damping system,thereby reducing its capacity to attenuate structural vibrations and leading to an increase in ground vibration energy;2)After 107 loading cycles,the attenuation rate of the vibration acceleration for the MPC increases by 171.9%.Conversely,at the corresponding disconnected location,the attenuation rate of ground vibration acceleration decreases by 65.6%.In conclusion,longitudinally connected floating slab tracks exhibit superior vibration reduction performance.While the vibration reduction performance of longitudinally connected floating slab tracks may diminish to some extent during long-term service,these tracks continue to meet specific vibration reduction requirements.
基金Science and Technology Project of Aerospace Information Research Institute,Chinese Academy of Sciences(Y910340Z2F)Science and Technology Project of BBEF(E3E2010201)。
文摘Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting their potential applications.Therefore,it is imperative to study the creation of lowfrequency signals using antennas with suitable dimensions.In contrast to conventional mechanical antenna techniques,our study generates low-frequency signals in the spatial domain utilizing the principle of the Doppler effect.We also defines the antenna array architecture,the timing sequency,and the radiating element signal waveform,and provides experimental prototypes including 8/64 antennas based on earlier research.In the conducted experiments,121 MHz,40 MHz,and 10 kHz composite signals are generated by 156 MHz radiating element signals.The composite signal spectrum matches the simulations,proving our low-frequency signal generating method works.This holds significant implications for research on generating low-frequency signals with small-sized antennas.
文摘Correction:J Cotton Res 8,27(2025)https://doi.org/10.1186/s42397-025-00228-y During the publication process of the original article(Soltani Toularoud et al.2025),the article title has been wrongly captured.Te article title should be corrected from:of butisanstar and clopyralid herbicides on Gos-sypium hirsutum L.growth:insights from a pot experiment to:Residual efects of butisanstar and clopyralid herbi-cides on Gossypium hirsutum L.growth:insights from a pot experiment Te original article(Soltani Toularoud et al.2025)has been updated.Te publisher apologizes to the authors and readers for the inconvenience caused.
基金National Natural Science Foundation of China(Grant Nos.12172179,11802141 and U2341244)National Natural Science Foundation for Young Scientists of China(Grant No.12202207)+3 种基金China Postdoctoral Science Foundation(Grant No.2022M711623)Natural Science Foundation of Jiangsu Province(Grant No.BK20220968)Open Funds for Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education(Grant No.CJ202201)Open Funds for Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province(Grant No.22kfgk03)。
文摘Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current research on the anti-penetration of aramid fabrics mostly focuses unilaterally on the structure and performance of aramid fabrics or the shape and size of projectiles,with fewer studies on the coupled effect of both on ballistic performance.This study analyzes how the coupling relationship(or size effect)between the projectile and fiber bundle dimensions affects the fabric ballistic performance from a mesoscopic scale perspective.Taking plain weave aramid fabric as the research object,considering different diameter projectiles,through a large number of ballistic impact tests and numerical simulations,parameters such as ballistic limit velocity,average energy absorption of fabric,and specific energy absorption ratio(average energy absorption of fabric divided by projectile cross-sectional area)are obtained for ballistic performance analysis.The influence law of projectile size on the ballistic performance of high-performance fabrics is as follows:The relative range of fitted ballistic limit velocity at different target positions gradually decreases and then stabilizes as the projectile diameter increases,indicating that the fabric structure effect gradually disappears at a projectile diameter of 12 mm;The average ballistic limit velocity at three impact positions,P1,P2,and P3,provides the corresponding ballistic limit velocity for 1000D aramid fabric,which increases with projectile diameter but the rate of increase slows down at an inflection point,which in this study occurs where the fabric structure effect nearly disappears at a projectile diameter of 12 mm;The energy absorption ratio increases and then decreases as the projectile diameter increases from 4 mm to 20 mm,reaching a peak at the diameter of 12 mm due to the gradual disappearance of the fabric structural effect.The projectile diameter of 12 mm corresponds to the coupling size of 11.159,which provides a size design reference for the macroscopic-based continuum models of aramid plain weave fabrics.
基金Projects(U1734207,51978585)supported by the National Natural Science Foundation of ChinaProject(2016 YFE 0205200)supported by the National Key Research and Development Program of China。
文摘Excessive vibrations inside buildings in the Lihu New Village caused by the Shenzhen Metro Line 2 underground railway were investigated by conducting analyses of the tunnel,the track irregularities,the stiffness of the fastening system,and the vibrations of the track system and the building at different speeds.A numerical simulation based on the dynamic coupling theory of the vehicle-track system was used to verify the experimental results.Suitable countermeasures were investigated.The results show that rail corrugation is the primary reason for the excessive vibration,and an increase in the stiffness of the vertical fastening system is the secondary reason.The solution was to eliminate the rail corrugation using rail grinding and decrease the vertical stiffness by changing the fastening system.The results of this study provide references for solving vibration problems caused by rail lines.
基金Project(2014CB047100)supported by the National Basic Research Program of China(973 Program)Projects(51679093/E090705,51774147/E0409)supported by the National Natural Science Foundation of ChinaProject(2017J01094)supported by the Natural Science Foundation of Fujian Province,China
文摘Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to explore deformation characteristics and permeability properties and provide some parameters to character the rock under unloading conditions.A series of triaxial tests with permeability and acoustic emission signal measurement were conducted under the path of confining pressure unloading prior to the peak stress.Deformation behavior and permeability evolution in the whole stress–strain process based on these experimental results were analyzed in detail.Results demonstrate that,under the confining pressure unloading conditions,a good correspondence relationship among the stress–axial strain curve,permeability–axial strain curve and acoustic emission activity pattern was obtained.After the confining pressure was unloaded,the radial strain grew much faster than the axial strain,which induced the volumetric strain growing rapidly.All failures under confining pressure unloading conditions featured brittle shear failure with a single macro shear rupture surface.With the decrease in deformation modulus during the confining pressure unloading process,the damage variable gradually increases,indicating that confining pressure unloading was a process of damage accumulation and strength degradation.From the entire loading and unloading process,there was a certain positive correlation between the permeability and volumetric strain.
基金Project(50304010) supported by the National Natural Science Foundation of China
文摘In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups of agent were tested,respectively.It is found that these two experimental design methods show drawbacks,that is,the amount of agent is difficult to determine,and the results are not fully optimized.Therefore,multiple regression experimental method was used to design experimental formula.By randomly selecting arbitrary agent with the amount within the recommended range,17 groups of drilling fluid formula were designed,and the plastic viscosity of each experiment formula was measured.Set plastic viscosity as the objective function,through multiple regressions,then quadratic regression model is obtained,whose correlation coefficient meets the requirement.Set target values of plastic viscosity to be 18,20 and 22 mPa·s,respectively,with the trial method,5 drilling fluid formulas are obtained with accuracy of 0.000 3,0.000 1 and 0.000 3.Arbitrarily select target value of each of the two groups under the formula for experimental verification of drilling fluid,then the measurement errors between theoretical and tested plastic viscosity are less than 5%,confirming that regression model can be applied to optimizing the circulating of plastic-foam drilling fluid viscosity.In accordance with the precision of different formulations of drilling fluid for other constraints,the methods result in the optimization of the circulating micro-bubble drilling fluid parameters.
基金Project(51274065)supported by the National Natural Science Foundation of ChinaProject(2015020074)supported by the Science and Technology Planning Project of Liaoning Province,China
文摘In the present work, the gas flow pressure drop and gas–solid heat transfer characteristics in sinter bed layer of vertical tank were studied experimentally on the basis of the homemade experimental setup. The gas flow pressure drop through the sinter bed layer was measured with different gas velocity and particle diameters, as well as the sinter and air temperatures. The influences of gas superficial velocity and particle diameter on the gas flow pressure drop and gas solid heat transfer in sinter bed layer were analyzed in detail. The revised Ergun's correlation and gas solid heat transfer correlation were obtained according to the regression analysis of experimental data. It is found that, the pressure drop of unit bed layer height gradually increases as a quadratic relationship with increasing the gas superficial velocity, and decreases as an exponential relationship with the increase of sinter particle diameter. For a given sinter temperature, the heat transfer coefficient in sinter bed layer increases with increasing the gas superficial velocity, and increases with decreasing the sinter particle diameter. In addition, the heat transfer coefficient also gradually increases with increasing the sinter temperature at the same gas superficial velocity and sinter particle diameter. The mean deviations between the experimental data obtained from this work and the values calculated by the revised Ergun's correlation and the experimental heat transfer correlation are 7.22% and 4.22% respectively, showing good prediction.
文摘The simulation of compression and fracture of charge bed in chamber is one of the key problems in the study of launch safety of gun propellant charge. A new kind of experimental device that can be used for simulation is given. Its structure and operational principle are introduced. Using a semi-closed vessel as a source of compression force, the device can simulate any kind of dynamic environment in a gun propellant charge. Using the low temperature inert gas (N2) as the compression medium, the device can not only ensure that the simulation is real, but also protect the fragmentized propellant from combustion after experiment. Using the device, many simulation experiments have been accomplished, and dynamic environment of propellant fracture is acquired. With the experiments, fragmentized propellant for the compression and fracture of charge bed is obtained. Results of experiments show that the new device can be used to study the principle of the compression and fracture of charge bed.
文摘The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow the trajectories of a virtual leader despite communication faults considered as smooth time-varying delays dependent on the distance between the agents.Linear matrix inequalities(LMIs)-based conditions are obtained to synthesize a controller gain that guarantees stability of the synchronization error.Based on the closed-loop system,an event-triggered mechanism is designed to reduce the control law update and information exchange in order to reduce energy consumption.The proposed approach is implemented in a real platform of a fleet of unmanned aerial vehicles(UAVs)under communication faults.A comparison between a state-of-the-art technique and the proposed technique has been provided,demonstrating the performance improvement brought by the proposed approach.
基金Project(2016YFB1200404)supported by the National Key Research and Development Program of ChinaProjects(51605044,U1534210)supported by the National Science Foundation of China。
文摘This paper reviews the current status of investigation on snow accumulation on the bogies of high-speed trains(HSTs) running in snowy region. First, the background of the snow issue occurring to the HST and the contra-measures for the snow issue proposed in the past decades are provided by reviewing previous studies. Next, the methodology for investigating the snow issue developed by High-Speed Train Research Center of Central South University is introduced, including the numerical simulation research platform and the experimental devices for two-phase flow wind tunnel tests. Then, effective anti-snow flow control schemes for guiding the underbody airflow and their impact on the motion and accretion of snow in the installation region of the bogies are presented. Finally, the remaining investigating challenge for the snow issue of HST and the future research with respect to the challenge are provided from an engineering application viewpoint.