The volatile chemical components of Radix Paeoniae Rubra (RPR) were analyzed by gas chromatography-mass spectrometry with the method of heuristic evolving latent projections and overall volume integration. The results...The volatile chemical components of Radix Paeoniae Rubra (RPR) were analyzed by gas chromatography-mass spectrometry with the method of heuristic evolving latent projections and overall volume integration. The results show that 38 volatile chemical components of RPR are determined, accounting for 95.21% of total contents of volatile chemical components of RPR. The main volatile chemical components of RPR are (Z, Z)-9,12-octadecadienoic acid, n-hexadecanoic acid, 2-hydroxy- benzaldehyde, 1-(2-hydroxy-4-methoxyphenyl)-ethanone, 6,6-dimethyl-bicyclo[3.1.1] heptane-2-methanol, 4,7-dimethyl-benzofuran, 4-(1-methylethenyl)-1-cyclohexene-1-carboxaldehyde, and cyclohexadecane.展开更多
Command, control, communication, computing, intel- ligence, surveillance and reconnaissance (C^4ISR) in information age is a complex system whose structure always changes ac- tively or passively during the warfare. ...Command, control, communication, computing, intel- ligence, surveillance and reconnaissance (C^4ISR) in information age is a complex system whose structure always changes ac- tively or passively during the warfare. Therefore, it is important to optimize the structure, especially in ambiguous and quick-tempo modern warfare. This paper proposes an adaptive evolvement mechanism for the C^4ISR structure to survive the changeable warfare. Firstly, the information age C^4ISR structure is defined and modeled based on the complex network theory. Secondly, taking the observe, orient, decide and act (OODA) model into consideration, four kinds of loops in the C^4ISR structure are pro- posed and their coefficient of networked effects (CNE) is further defined. Then, the adaptive evolvement mechanisms of the four kinds of loops are presented respectively. Finally, taking the joint air-defense C^4ISR as an example, simulation experiments are im- plemented, which validate the evolvement mechanism and show that the information age C41SR structure has some characteristics of small-world network and scale-free network.展开更多
A virtual reconfigurable architecture(VRA)-based evolvable hardware is proposed for automatic synthesis of combinational logic circuits at gate-level.The proposed VRA is implemented by a Celoxica RC1000 peripheral com...A virtual reconfigurable architecture(VRA)-based evolvable hardware is proposed for automatic synthesis of combinational logic circuits at gate-level.The proposed VRA is implemented by a Celoxica RC1000 peripheral component interconnect(PCI)board with an Xilinx Virtex xcv2000E field programmable gate array(FPGA).To improve the quality of the evolved circuits,the VRA works through a two-stage evolution: finding a functional circuit and minimizing the number of logic gates used in a feasible circuit.To optimize the algorithm performance in the two-stage evolutionary process and set free the user from the time-consuming process of mutation parameter tuning,a self-adaptive mutation rate control(SAMRC)scheme is introduced.In the evolutionary process,the mutation rate control parameters are encoded as additional genes in the chromosome and also undergo evolutionary operations.The efficiency of the proposed methodology is tested with the evolutions of a 4-bit even parity function,a 2-bit multiplier,and a 3-bit multiplier.The obtained results demonstrate that our scheme improves the evolutionary design of combinational logic circuits in terms of quality of the evolved circuit as well as the computational effort,when compared to the existing evolvable hardware approaches.展开更多
To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved p...To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved product development group. This paper reviews the state-of-the-art of HLA evolved modular FOM. In particular, related concepts, the overall impact on HLA standards, extension principles, and merging processes are discussed. Also permitted and restricted combinations, and merging rules are provided, and the influence on HLA interface specification is given. The comparison between modular FOM and base object model (BOM) is performed to illustrate the importance of their combination. The applications of modular FOM are summarized. Finally, the significance to facilitate compoable simulation both in academia and practice is presented and future directions are pointed out.展开更多
Chromatography-mass spectrometry(GC-MS)was used to analyze the volatile components of cut tobacco samples with the help of heuristic evolving latent projections(HELP).After extracting with simultaneous distillation an...Chromatography-mass spectrometry(GC-MS)was used to analyze the volatile components of cut tobacco samples with the help of heuristic evolving latent projections(HELP).After extracting with simultaneous distillation and extraction method,the volatile components in cut tobacco were detected by GC-MS.Then the obtained original two-dimensional data were resolved into pure mass spectra and chromatograms.The qualitative analysis was performed by similarity searches in the national institute of standards and technology(NIST)mass database with the obtained pure mass spectrum of each component and the quantitative results were obtained by calculating the volume of total two-way response.The accuracy of qualitative and quantitative results were greatly improved by using the two-dimensional comprehensive information of chromatograms and mass spectra.107 of 141 separated constituents in the total ion chromatogram of the volatile components were identified and quantified,accounting for about 88.01% of the total content.The result proves that the developed method is powerful for the analysis of complex cut tobacco samples.展开更多
Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolvi...Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc.展开更多
This paper investigates the maximum network through- put for resource-constrained space networks based on the delay and disruption-tolerant networking (DTN) architecture. Specifically, this paper proposes a methodol...This paper investigates the maximum network through- put for resource-constrained space networks based on the delay and disruption-tolerant networking (DTN) architecture. Specifically, this paper proposes a methodology for calculating the maximum network throughput of multiple transmission tasks under storage and delay constraints over a space network. A mixed-integer linear programming (MILP) is formulated to solve this problem. Simula- tions results show that the proposed methodology can successfully calculate the optimal throughput of a space network under storage and delay constraints, as well as a clear, monotonic relationship between end-to-end delay and the maximum network throughput under storage constraints. At the same time, the optimization re- sults shine light on the routing and transport protocol design in space communication, which can be used to obtain the optimal network throughput.展开更多
In this paper, an evolving system is introduced. That any system is evolving means that any entity in the system is in developing state and entities compete with each other. Any entity can be represented by developmen...In this paper, an evolving system is introduced. That any system is evolving means that any entity in the system is in developing state and entities compete with each other. Any entity can be represented by development of the entity and its environment consisting of a closed cycle. Any subsystem is assigned by a management. The competing controller controls competing entities and arranges them in any advantage order by its common rules and local rules of any subsystem. Each entity can use its competing rules to change the evaluation by any subsystem containing it. This kind of changes leads the entity into its increase of the position in an advantage order.展开更多
基金Project(20235020) supported by the National Natural Science Foundation of China
文摘The volatile chemical components of Radix Paeoniae Rubra (RPR) were analyzed by gas chromatography-mass spectrometry with the method of heuristic evolving latent projections and overall volume integration. The results show that 38 volatile chemical components of RPR are determined, accounting for 95.21% of total contents of volatile chemical components of RPR. The main volatile chemical components of RPR are (Z, Z)-9,12-octadecadienoic acid, n-hexadecanoic acid, 2-hydroxy- benzaldehyde, 1-(2-hydroxy-4-methoxyphenyl)-ethanone, 6,6-dimethyl-bicyclo[3.1.1] heptane-2-methanol, 4,7-dimethyl-benzofuran, 4-(1-methylethenyl)-1-cyclohexene-1-carboxaldehyde, and cyclohexadecane.
基金supported by the National Defense Basic Research Program of China and National Defense Pre-Research Foundation of China
文摘Command, control, communication, computing, intel- ligence, surveillance and reconnaissance (C^4ISR) in information age is a complex system whose structure always changes ac- tively or passively during the warfare. Therefore, it is important to optimize the structure, especially in ambiguous and quick-tempo modern warfare. This paper proposes an adaptive evolvement mechanism for the C^4ISR structure to survive the changeable warfare. Firstly, the information age C^4ISR structure is defined and modeled based on the complex network theory. Secondly, taking the observe, orient, decide and act (OODA) model into consideration, four kinds of loops in the C^4ISR structure are pro- posed and their coefficient of networked effects (CNE) is further defined. Then, the adaptive evolvement mechanisms of the four kinds of loops are presented respectively. Finally, taking the joint air-defense C^4ISR as an example, simulation experiments are im- plemented, which validate the evolvement mechanism and show that the information age C41SR structure has some characteristics of small-world network and scale-free network.
基金Projects(61203308,61309014)supported by the National Natural Science Foundation of China
文摘A virtual reconfigurable architecture(VRA)-based evolvable hardware is proposed for automatic synthesis of combinational logic circuits at gate-level.The proposed VRA is implemented by a Celoxica RC1000 peripheral component interconnect(PCI)board with an Xilinx Virtex xcv2000E field programmable gate array(FPGA).To improve the quality of the evolved circuits,the VRA works through a two-stage evolution: finding a functional circuit and minimizing the number of logic gates used in a feasible circuit.To optimize the algorithm performance in the two-stage evolutionary process and set free the user from the time-consuming process of mutation parameter tuning,a self-adaptive mutation rate control(SAMRC)scheme is introduced.In the evolutionary process,the mutation rate control parameters are encoded as additional genes in the chromosome and also undergo evolutionary operations.The efficiency of the proposed methodology is tested with the evolutions of a 4-bit even parity function,a 2-bit multiplier,and a 3-bit multiplier.The obtained results demonstrate that our scheme improves the evolutionary design of combinational logic circuits in terms of quality of the evolved circuit as well as the computational effort,when compared to the existing evolvable hardware approaches.
基金supported by the National Natural Science Foundation of China(6067406960574056).
文摘To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved product development group. This paper reviews the state-of-the-art of HLA evolved modular FOM. In particular, related concepts, the overall impact on HLA standards, extension principles, and merging processes are discussed. Also permitted and restricted combinations, and merging rules are provided, and the influence on HLA interface specification is given. The comparison between modular FOM and base object model (BOM) is performed to illustrate the importance of their combination. The applications of modular FOM are summarized. Finally, the significance to facilitate compoable simulation both in academia and practice is presented and future directions are pointed out.
基金Project supported by the Postdoctoral Foundation of Changde Cigarette FactoryProject(20060400887) supported by China Postdoctoral Science Foundation
文摘Chromatography-mass spectrometry(GC-MS)was used to analyze the volatile components of cut tobacco samples with the help of heuristic evolving latent projections(HELP).After extracting with simultaneous distillation and extraction method,the volatile components in cut tobacco were detected by GC-MS.Then the obtained original two-dimensional data were resolved into pure mass spectra and chromatograms.The qualitative analysis was performed by similarity searches in the national institute of standards and technology(NIST)mass database with the obtained pure mass spectrum of each component and the quantitative results were obtained by calculating the volume of total two-way response.The accuracy of qualitative and quantitative results were greatly improved by using the two-dimensional comprehensive information of chromatograms and mass spectra.107 of 141 separated constituents in the total ion chromatogram of the volatile components were identified and quantified,accounting for about 88.01% of the total content.The result proves that the developed method is powerful for the analysis of complex cut tobacco samples.
基金supported by the National Natural Science Foundation of China(615730176140149961174162)
文摘Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc.
基金supported by the National Natural Sciences Foundation of China(6113200261321061+3 种基金6123101161201183)the National Basic Research Program of China(2014CB340206)the Tsinghua University Initiative Scientific Research Program(2011Z05117)
文摘This paper investigates the maximum network through- put for resource-constrained space networks based on the delay and disruption-tolerant networking (DTN) architecture. Specifically, this paper proposes a methodology for calculating the maximum network throughput of multiple transmission tasks under storage and delay constraints over a space network. A mixed-integer linear programming (MILP) is formulated to solve this problem. Simula- tions results show that the proposed methodology can successfully calculate the optimal throughput of a space network under storage and delay constraints, as well as a clear, monotonic relationship between end-to-end delay and the maximum network throughput under storage constraints. At the same time, the optimization re- sults shine light on the routing and transport protocol design in space communication, which can be used to obtain the optimal network throughput.
文摘In this paper, an evolving system is introduced. That any system is evolving means that any entity in the system is in developing state and entities compete with each other. Any entity can be represented by development of the entity and its environment consisting of a closed cycle. Any subsystem is assigned by a management. The competing controller controls competing entities and arranges them in any advantage order by its common rules and local rules of any subsystem. Each entity can use its competing rules to change the evaluation by any subsystem containing it. This kind of changes leads the entity into its increase of the position in an advantage order.