The effect of Ti addition on microstructure and mechanical properties of Zn-22Al eutectoid alloy with 0.15 wt%Ti was investigated.It was observed that the presence of Ti changes the morphology of n phase in the alloy....The effect of Ti addition on microstructure and mechanical properties of Zn-22Al eutectoid alloy with 0.15 wt%Ti was investigated.It was observed that the presence of Ti changes the morphology of n phase in the alloy.Addition of Ti to Zn-Al alloy caused the formation of Ti(Zn,Al)_(3);phase.Before applying equal channel angular pressing(ECAP),two times of homogenization treatment were conducted on the alloy.After secondary homogenization,the microstructure consisted of a homogeneous and fine mixture ofαand n phases and the as-cast lamellar structure removed.After homogenization,ECAP was carried out on Ti-containing Zn-22Al alloy.The fraction of high angle grain boundaries increased with increasing the number of ECAP passes.The average grain size reduced from 930 nm after secondary homogenization to 380 nm after 8 passes of ECAP.The texture of the alloy also changed by applying ECAP.Maximum elongation to failure of the homogenized alloy was 135%at a strain rate of 10^(-5)s^(-1)which enhanced to a maximum of 405%at a strain rate of 10^(-3)s^(-1)after 8 passes of ECAP.It was also observed that by conducting ECAP and increasing the number of passes the hardness decreases,which indicates work-softening behavior due to dynamic recovery/recrystallization.展开更多
High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material...High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃.展开更多
文摘The effect of Ti addition on microstructure and mechanical properties of Zn-22Al eutectoid alloy with 0.15 wt%Ti was investigated.It was observed that the presence of Ti changes the morphology of n phase in the alloy.Addition of Ti to Zn-Al alloy caused the formation of Ti(Zn,Al)_(3);phase.Before applying equal channel angular pressing(ECAP),two times of homogenization treatment were conducted on the alloy.After secondary homogenization,the microstructure consisted of a homogeneous and fine mixture ofαand n phases and the as-cast lamellar structure removed.After homogenization,ECAP was carried out on Ti-containing Zn-22Al alloy.The fraction of high angle grain boundaries increased with increasing the number of ECAP passes.The average grain size reduced from 930 nm after secondary homogenization to 380 nm after 8 passes of ECAP.The texture of the alloy also changed by applying ECAP.Maximum elongation to failure of the homogenized alloy was 135%at a strain rate of 10^(-5)s^(-1)which enhanced to a maximum of 405%at a strain rate of 10^(-3)s^(-1)after 8 passes of ECAP.It was also observed that by conducting ECAP and increasing the number of passes the hardness decreases,which indicates work-softening behavior due to dynamic recovery/recrystallization.
基金Project(52274369)supported by the National Natural Science Foundation of China。
文摘High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃.