To scientifically evaluate the restoration performance of ancient city walls,Terahertz time-domain spectroscopy(THz-TDS)and infrared thermal imaging technology were applied to assess the Desheng Fortress(Ming Dynasty)...To scientifically evaluate the restoration performance of ancient city walls,Terahertz time-domain spectroscopy(THz-TDS)and infrared thermal imaging technology were applied to assess the Desheng Fortress(Ming Dynasty).Three representative sections were examined:adobe brick masonry repaired(Area 1),well-preserved original(Area 2),and layer-by-layer ramming repaired(Area 3).THz spectral data revealed significant differences between Area 1(time delay:3.72 ps;refractive index:2.224)and Area 2(time delay:3.02 ps;refractive index:2.107),while Area 3(time delay:3.12 ps;refractive index:2.098)demonstrated nearly identical THz spectral data to Area 2.Infrared thermal imaging also showed that the Area 3 restored by layer-by-layer ramming exhibited greater uniformity with fewer instances of cracks,capillary phenomena,or biological diseases.The proposed point-surface integrated evaluation methodology synergistically combines infrared thermography mapping of heritage surfaces with THz spectral datasets acquired through in-situ micro-sampling,enabling quantitative restoration assessment and providing a novel approach for scientifically validating traditional conservation techniques.展开更多
With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation wind...With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.展开更多
Background Transgenic research in crops involves using genetic engineering techniques to introduce specific genes of interest from other organisms,or even entirely new genes into plant genomes to create crops with des...Background Transgenic research in crops involves using genetic engineering techniques to introduce specific genes of interest from other organisms,or even entirely new genes into plant genomes to create crops with desirable traits that wouldn’t be possible through conventional breeding methods.Transgenic crops have been developed for various traits globally.Whitefly,Bemisia tabaci(Gennadius)is one of the major sucking pests of cotton that cause significant damage to the cotton production.To combat whitefly infestations,researchers have developed four transgenic cotton lines expressing the fern protein.And those transgenic lines need to be evaluated for their performance against the target pest—whitefly.The evaluation was designed as controlled trials in polyhouse or muslin cloth cages under open-choice and no-choice conditions by comparing four transgenic cotton lines(A,B,C,and D)with three control groups,including untransformed cotton plants with a same genetic background of the transgenic line,conventionally bred whitefly-resistant cotton,and whitefly-susceptible cotton.In order to study the generational effect,the evaluation also involved studies on whitefly development in laboratory,muslin cloth cage,and polyhouse conditions.Results Both open-choice and no-choice experiments had shown that all the four transgenic cotton lines(A,B,C,and D)expressing the fern protein reduced adult whitefly numbers significantly compared with the control lines,except for the no-choice conditions in 2021,where the transgenic line C was non-significant different from the resistant control line.Notably,the nymphal population on the resistant control line was relatively low and nonsignificant different from the transgenic line C in 2021;and the transgenic lines A and C in 2022 under open-choice conditions.Under no-choice condition,the nymphal counts in the resistant control line was non-significant different from transgenic lines C and D in 2021;and transgenic line D in 2022.All transgenic lines showed significant decrease in egg hatching in 2021 and nymphal development in 2022,except for the transgenic line C which had no significant different in the nymphal development comparing with non-transgenic control lines in 2022.Adult emergence rates in both years of evaluation showed significant decrease in transgenic lines A and B comparing with the control lines.Additionally,the results showed a significant reduction in cotton leaf curl disease and sooty mold development in all the four transgenic lines compared with susceptible control under open-choice conditions,indicating potential benefits of transgenic lines beyond direct effect on whitefly control.Furthermore,the research explored the generational effects of the fern protein on whitefly which revealed the lowest fecundity in the transgenic line C across F0,F1 and F3 generations,lower egg hatching in F1 and F2 generations in transgenic lines A and B,shorter nymphal duration in F1 and F2 generations in transgenic line B,and the least total adult emergence in the transgenic line C in F0 and F3 generations.Conclusions These findings suggest that the transgenic cotton lines expressing fern protein disrupts whitefly populations and the life cycle to a certain extent.However,results are not consistent over generations and years of study,indicating these transgenic lines were not superior over control lines and need to be improved in future breeding.展开更多
The use of ultra-high molecular weight polyethylene(UHMWPE)composite in the design of lightweight protective equipment,has gained a lot of interest.However,there is an urgent need to understand the ballistic response ...The use of ultra-high molecular weight polyethylene(UHMWPE)composite in the design of lightweight protective equipment,has gained a lot of interest.However,there is an urgent need to understand the ballistic response mechanism and theoretical prediction model of performance.This paper explores the ballistic response mechanism of UHMWPE composite through experimental and simulation analyses.Then,a resistance-driven modeling method was proposed to establish a theoretical model for predicting the bulletproof performance.The ballistic response mechanism of UHMWPE composite encompassed three fundamental modes:local response,structural response,and coupled response.The occurrence ratio of these fundamental response modes during impact was dependent on the projectile velocity and laminate thickness.The bulletproof performance of laminate under different response modes was assessed based on the penetration depth of the projectile,the bulging height on the rear face of the laminate,the thickness of remaining sub-laminate,and residual velocity of the projectile.The absolute deviations of bulletproof performance indicator between theoretical value and experimental value were well within 11.13%,demonstrating that the established evaluation model possessed high degree of prediction accuracy.展开更多
Accurate assessment of coal brittleness is crucial in the design of coal seam drilling and underground coal mining operations.This study proposes a method for evaluating the brittleness of gas-bearing coal based on a ...Accurate assessment of coal brittleness is crucial in the design of coal seam drilling and underground coal mining operations.This study proposes a method for evaluating the brittleness of gas-bearing coal based on a statistical damage constitutive model and energy evolution mechanisms.Initially,integrating the principle of effective stress and the Hoek-Brown criterion,a statistical damage constitutive model for gas-bearing coal is established and validated through triaxial compression tests under different gas pressures to verify its accuracy and applicability.Subsequently,employing energy evolution mechanism,two energy characteristic parameters(elastic energy proportion and dissipated energy proportion)are analyzed.Based on the damage stress thresholds,the damage evolution characteristics of gas bearing coal were explored.Finally,by integrating energy characteristic parameters with damage parameters,a novel brittleness index is proposed.The results demonstrate that the theoretical curves derived from the statistical damage constitutive model closely align with the test curves,accurately reflecting the stress−strain characteristics of gas-bearing coal and revealing the stress drop and softening characteristics of coal in the post-peak stage.The shape parameter and scale parameter represent the brittleness and macroscopic strength of the coal,respectively.As gas pressure increases from 1 to 5 MPa,the shape parameter and the scale parameter decrease by 22.18%and 60.45%,respectively,indicating a reduction in both brittleness and strength of the coal.Parameters such as maximum damage rate and peak elastic energy storage limit positively correlate with coal brittleness.The brittleness index effectively captures the brittleness characteristics and reveals a decrease in brittleness and an increase in sensitivity to plastic deformation under higher gas pressure conditions.展开更多
The function of the air target threat evaluation (TE) is the foundation for weapons allocation and senor resources management within the surface air defense. The multi-attribute evaluation methodology is utilized to...The function of the air target threat evaluation (TE) is the foundation for weapons allocation and senor resources management within the surface air defense. The multi-attribute evaluation methodology is utilized to address the issue of the TE in which the tactic features of the detected target are treated as evaluation attributes. Meanwhile, the intuitionistic fuzzy set (IFS) is employed to deal with information uncertainty in the TE process. Furthermore, on the basis of the entropy weight and inclusion-comparison probability, a hybrid TE method is developed. In order to accommodate the demands of naturalistic decision making, the proposed method allows air defense commanders to express their intuitive opinions besides incorporating into the threat features of the detected target. An illustrative example is provided to indicate the feasibility and advantage of the proposed method.展开更多
Some attributes are uncertain for evaluation work because of incomplete or limited information and knowledge.It leads to uncertainty in evaluation results.To that end,an evaluation method,uncertainty entropy-based exp...Some attributes are uncertain for evaluation work because of incomplete or limited information and knowledge.It leads to uncertainty in evaluation results.To that end,an evaluation method,uncertainty entropy-based exploratory evaluation(UEEE),is proposed to guide the evaluation activities,which can iteratively and gradually reduce uncertainty in evaluation results.Uncertainty entropy(UE)is proposed to measure the extent of uncertainty.First,the belief degree distributions are assumed to characterize the uncertainty in attributes.Then the belief degree distribution of the evaluation result can be calculated by using uncertainty theory.The obtained result is then checked based on UE to see if it could meet the requirements of decision-making.If its uncertainty level is high,more information needs to be introduced to reduce uncertainty.An algorithm based on the UE is proposed to find which attribute can mostly affect the uncertainty in results.Thus,efforts can be invested in key attribute(s),and the evaluation results can be updated accordingly.This update should be repeated until the evaluation result meets the requirements.Finally,as a case study,the effectiveness of ballistic missiles with uncertain attributes is evaluated by UEEE.The evaluation results show that the target is believed to be destroyed.展开更多
The condition of weightes non-dictatorship is extended and a comprehensive evaluae method emboding self-determinate which is combined with competitive view optimization principles is built. The basic process includes ...The condition of weightes non-dictatorship is extended and a comprehensive evaluae method emboding self-determinate which is combined with competitive view optimization principles is built. The basic process includes simulating the model of economic man's self-benefit bahaviors, taking the place of experts to evaluate, bringing in the model of minimizing the sum of included angles to integrate the information of multiple objects and put the objects in order finally. The method has the advangtages of less dependendence on the subjective information, plenty of information, fair process and simple caculating. Finally, an application example is given to illustrate the effectiveness of the proposed method.展开更多
On the basis of analyzing the flaws of present multiple-attribute and multilevel evaluation methods, concerning the problem of characteristics of the multiple-attribute and multilevel system s appraisal and the partic...On the basis of analyzing the flaws of present multiple-attribute and multilevel evaluation methods, concerning the problem of characteristics of the multiple-attribute and multilevel system s appraisal and the particular emphasis on the respective attributes in the evaluation process, as well as its relevance to the environment, an optimal attribute system is proposed, and the multiplicative analytic hierarchy process (MAHP) is used to obtain subjective weight coefficients and the objective weight coefficient evaluating method is given. The deviation between the index value of each level and the values of the same index of other levels are formulated, and an optimal model is gained, thus establishing the weight coefficients of the whole optimal attribute system. Furthermore, the detailed implementation procedure of this method is introduced. Besides, favorable results have been gained by applying the model to the practical problems of economic evaluation.展开更多
To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weap...To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weapon systems by combining grey relational analysis and TOPSIS is proposed. The model aggregates the grey relational grade and the distance to a new integrated closeness and reflects not only the trend but also the situation of the alternative. The example illuminates that the model is effective for the effectiveness evaluation of weapon systems.展开更多
Rock burst is one of the most catastrophic dynamic hazards in coal mining. A static and dynamic stresses superposition-based(SDSS-based) risk evaluation method of rock burst was proposed to pre-evaluate rock burst ris...Rock burst is one of the most catastrophic dynamic hazards in coal mining. A static and dynamic stresses superposition-based(SDSS-based) risk evaluation method of rock burst was proposed to pre-evaluate rock burst risk. Theoretical basis of this method is the stress criterion incurring rock burst and rock burst risk is evaluated according to the closeness degree of the total stress(due to the superposition of static stress in the coal and dynamic stress induced by tremors) with the critical stress. In addition, risk evaluation criterion of rock burst was established by defining the "Satisfaction Degree" of static stress. Furthermore,the method was used to pre-evaluate rock burst risk degree and prejudge endangered area of an insular longwall face in Nanshan Coal Mine in China. Results show that rock burst risk is moderate at advance extent of 97 m, strong at advance extent of 97-131 m,and extremely strong(i.e. inevitable to occur) when advance extent exceeds 131 m(mining is prohibited in this case). The section of two gateways whose floor abuts 15-3 coal seam is a susceptible area prone to rock burst. Evaluation results were further compared with rock bursts and tremors detected by microseismic monitoring. Comparison results indicate that evaluation results are consistent with microseismic monitoring, which proves the method's feasibility.展开更多
The weapons system portfolio selection problem arises at the equipment demonstration stage and deals with the military application requirements.Further,the contribution rate of the system is one of the important indic...The weapons system portfolio selection problem arises at the equipment demonstration stage and deals with the military application requirements.Further,the contribution rate of the system is one of the important indicators to evaluate the role of a system,which can facilitate the weapons system portfolio selection.Therefore,combining the system contribution rate with system portfolio selection is the focus of this study.It also focuses on calculating the contribution rates of multiple equipment systems with various types of capabilities.The contribution rate is measured by establishing a hierarchical multi-criteria value model from three dimensions.Based on the value model,the feasible portfolios are developed under certain cost constraints and the optimal weapons system portfolios are obtained by using the classification optimization selection strategy.Finally,an illustrative example is presented to verify the feasibility of the proposed model.展开更多
This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the ...This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the dangerousness of this geological disaster.The losses that are caused by water and mud inrush are taken into consideration to account for its harmfulness.Then a risk evaluation model based on the dangerousness-harmfulness evaluation indicator system is constructed,which is more convincing in comparison with the traditional methods.The catastrophe theory is used to evaluate the risk level of water and mud inrush and it has great advantage in handling problems involving discontinuous catastrophe processes.To validate the proposed approach,the Qiyueshan tunnel of Yichang-Wanzhou Railway is taken as an example in which four target segments are evaluated using the risk evaluation model.Finally,the evaluation results are compared with the excavation data,which shows that the risk levels predicted by the proposed approach are in good agreements with that observed in engineering.In conclusion,the catastrophe theory-based risk evaluation model is an efficient and effective approach for water and mud inrush in karst tunnels.展开更多
The clustering evaluation can be used to scientifically classify the objects to be evaluated according to the information aggregation of various evaluation rules. In grey weighted clustering evaluation, the index clus...The clustering evaluation can be used to scientifically classify the objects to be evaluated according to the information aggregation of various evaluation rules. In grey weighted clustering evaluation, the index clustering rule relies on the construction of the whitenization weight function, while the existing construction method of the linear function lacks the construction mechanism analysis and validity explanation. A normative construction principle is put forward by analyzing the construction mechanism of the function. Through proving the normative principle of the function,the basic modal function(BMF) is proposed and characterized by different function forms. Then, a new type of the whitenization weight function and its grey clustering evaluation model algorithm are given by studying the mechanism and nature of the construction of different forms of the function. Finally, the comparative study for self-innovation capability of defense science and technology industry(DSTI) is taken as an example. The results show that the different construction ways of the function have an effect on the clustering result. The proposed construction mechanism can better explain the index clustering rules and evaluation effectiveness,which will perfect the theoretical system of grey clustering evaluation and be applied to practice effectively.展开更多
In view of the disadvantage of one-sided evaluation when using single index to evaluate geomagnetic map suitability,a comprehensive evaluation method based on multi-index fusion is proposed.The multi-index such as sta...In view of the disadvantage of one-sided evaluation when using single index to evaluate geomagnetic map suitability,a comprehensive evaluation method based on multi-index fusion is proposed.The multi-index such as standard deviation,roughness,correlation coefficient,entropy and cumulative gradient are considered.To overcome the poor objectivity of traditional fuzzy evaluation method when confirming the weight of index,the comprehensive evaluation value is given by using entropy technology to amend the weight.The simulation by matching algorithm of MSD and MAD shows that this method can evaluate the suitability comprehensively and reasonably.Bigger evaluation value can get higher matching probability,which indicate the good consistency between them.展开更多
Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experimen...Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experiments, we depict an SoS effectiveness analysis and evaluation method using parallel expe- riments theory in detail. A case study is carried out which takes the missile defense system as an example. An artificial system of the missile defense system is constructed with the multi-agent modeling method. Then, single factor, multiple factors and defense position deployment computational experiments are carried out and evaluated with the statistical analysis method. Experiment re- sults show that the altitude of the secondary interception missile is not the key factor which affects SoS effectiveness and putting the defense position ahead will increase defense effectiveness. The case study demonstrates the feasibility of the proposed method.展开更多
Using soil data of the Second National Field Survey,the soil fertility of wetland ecosystem of Dongting Lake was evaluated by using the technology of GIS and method of fuzzy evaluation.Integrated with the wetland actu...Using soil data of the Second National Field Survey,the soil fertility of wetland ecosystem of Dongting Lake was evaluated by using the technology of GIS and method of fuzzy evaluation.Integrated with the wetland actuality of Dongting Lake and particularity of paddy,seven factors (including soil organic matter,total nitrogen,total phosphorus,total potassium,available phosphorus,available potassium,and pH value),closely related with soil fertility,were chosen to establish the index system of synthetical evaluation.Based on the effect degree of each selected index on soil fertility,a judgment matrix was built,and the weight coefficient was determined by the method of correlation coefficient.Finally,under the support of the spatial analysis module of GIS (Geographic Information System),the spatial distribution properties of soil fertility in wetland ecosystem of Dongting Lake were studied.The results show that the soil fertility of Dongting Lake wetland ecosystem is not very good,and the area of type III and type IV achieves 69.8%.As a result,many countermeasures should be taken to improve the soil fertility.As for the spatial properties,the soil fertility level of central and west Dongting Lake is much higher than that of north and south part.The soil fertility of paddy field surpasses that of red soil,and the contents of soil organic matter and total nitrogen in paddy field are large.展开更多
Stability condition and quality evaluation formula of layerlike backfilling roof,Q≥C,where Q denotes is quality index depending on allowable compressive or tensile strength and integrity of backfilling,and C is the t...Stability condition and quality evaluation formula of layerlike backfilling roof,Q≥C,where Q denotes is quality index depending on allowable compressive or tensile strength and integrity of backfilling,and C is the technical index depending on mining method and backfilling technology,were inferred according to simply supported beam theorem.Technical treatment measures for instable backfilling roof,including optimum of appropriate filling materials and dosage for excellent flow property and reduction of backfill cost.It is proved that slope equation of backfill slurry in a stope to be filled is y=hexp[x2/(2σ)2)],where h is height of cone and σ2 is mean square,and that optimum drainage point of backfill slurry can be determined by the equation and sizes of stope.Case study indicates that the results can give a theoretical support for quality evaluation and control of layerlike backfilling.展开更多
Teaching evaluation on a WebGIS course is a multi-objective nonlinear high-dimensional NP-hard problem. The index system for the teaching evaluation of a WebGIS course, including teacher- and student-oriented sub-syst...Teaching evaluation on a WebGIS course is a multi-objective nonlinear high-dimensional NP-hard problem. The index system for the teaching evaluation of a WebGIS course, including teacher- and student-oriented sub-systems, is first established and used for questionnaires from 2013 to 2017. The multi-objective nonlinear high-dimensional evaluation model is constructed and then solved via dynamic self-adaptive teaching–learning-based optimization (DSATLBO). DSATLBO is based on teaching–learning-based optimization with five improvements: dynamic nonlinear self-adaptive teaching factor, extracurricular tutorship factor, dynamic self-adaptive learning factor, multi-way learning factor, and non-dominated sorting factor. WebGIS teaching performance is fully evaluated based on questionnaires and DSATLBO. Optimal weights and weighted scores from DSATLBO are compared with those from the non-dominated sorting genetic algorithm-II using the Pareto front, coverage to two sets, and spacing of the non-dominated solution sets to validate the performance of DSATLBO. The results show that DSATLBO can be uniformly distributed along the Pareto front. Therefore, DSATLBO can efficiently and feasibly solve the multi-objective nonlinear high-dimensional teaching evaluation model of a WebGIS course. The proposed teaching evaluation method can help reflecting the quality of all aspects of classroom teaching and guide the professional development of students.展开更多
The traditional voltage stability analysis method is mostly based on the deterministic mode1.and ignores the uncertainties of bus loads,power supplies,changes in network configuration and so on.However,the great expan...The traditional voltage stability analysis method is mostly based on the deterministic mode1.and ignores the uncertainties of bus loads,power supplies,changes in network configuration and so on.However,the great expansion of renewable power generations such as wind and solar energy in a power system has increased their uncertainty,and仃aditional techniques are limited in capturing their variable behavior.This leads to greater needs of new techniques and methodologies to properly quan tify the voltage stability of power systems.展开更多
文摘To scientifically evaluate the restoration performance of ancient city walls,Terahertz time-domain spectroscopy(THz-TDS)and infrared thermal imaging technology were applied to assess the Desheng Fortress(Ming Dynasty).Three representative sections were examined:adobe brick masonry repaired(Area 1),well-preserved original(Area 2),and layer-by-layer ramming repaired(Area 3).THz spectral data revealed significant differences between Area 1(time delay:3.72 ps;refractive index:2.224)and Area 2(time delay:3.02 ps;refractive index:2.107),while Area 3(time delay:3.12 ps;refractive index:2.098)demonstrated nearly identical THz spectral data to Area 2.Infrared thermal imaging also showed that the Area 3 restored by layer-by-layer ramming exhibited greater uniformity with fewer instances of cracks,capillary phenomena,or biological diseases.The proposed point-surface integrated evaluation methodology synergistically combines infrared thermography mapping of heritage surfaces with THz spectral datasets acquired through in-situ micro-sampling,enabling quantitative restoration assessment and providing a novel approach for scientifically validating traditional conservation techniques.
文摘With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.
文摘Background Transgenic research in crops involves using genetic engineering techniques to introduce specific genes of interest from other organisms,or even entirely new genes into plant genomes to create crops with desirable traits that wouldn’t be possible through conventional breeding methods.Transgenic crops have been developed for various traits globally.Whitefly,Bemisia tabaci(Gennadius)is one of the major sucking pests of cotton that cause significant damage to the cotton production.To combat whitefly infestations,researchers have developed four transgenic cotton lines expressing the fern protein.And those transgenic lines need to be evaluated for their performance against the target pest—whitefly.The evaluation was designed as controlled trials in polyhouse or muslin cloth cages under open-choice and no-choice conditions by comparing four transgenic cotton lines(A,B,C,and D)with three control groups,including untransformed cotton plants with a same genetic background of the transgenic line,conventionally bred whitefly-resistant cotton,and whitefly-susceptible cotton.In order to study the generational effect,the evaluation also involved studies on whitefly development in laboratory,muslin cloth cage,and polyhouse conditions.Results Both open-choice and no-choice experiments had shown that all the four transgenic cotton lines(A,B,C,and D)expressing the fern protein reduced adult whitefly numbers significantly compared with the control lines,except for the no-choice conditions in 2021,where the transgenic line C was non-significant different from the resistant control line.Notably,the nymphal population on the resistant control line was relatively low and nonsignificant different from the transgenic line C in 2021;and the transgenic lines A and C in 2022 under open-choice conditions.Under no-choice condition,the nymphal counts in the resistant control line was non-significant different from transgenic lines C and D in 2021;and transgenic line D in 2022.All transgenic lines showed significant decrease in egg hatching in 2021 and nymphal development in 2022,except for the transgenic line C which had no significant different in the nymphal development comparing with non-transgenic control lines in 2022.Adult emergence rates in both years of evaluation showed significant decrease in transgenic lines A and B comparing with the control lines.Additionally,the results showed a significant reduction in cotton leaf curl disease and sooty mold development in all the four transgenic lines compared with susceptible control under open-choice conditions,indicating potential benefits of transgenic lines beyond direct effect on whitefly control.Furthermore,the research explored the generational effects of the fern protein on whitefly which revealed the lowest fecundity in the transgenic line C across F0,F1 and F3 generations,lower egg hatching in F1 and F2 generations in transgenic lines A and B,shorter nymphal duration in F1 and F2 generations in transgenic line B,and the least total adult emergence in the transgenic line C in F0 and F3 generations.Conclusions These findings suggest that the transgenic cotton lines expressing fern protein disrupts whitefly populations and the life cycle to a certain extent.However,results are not consistent over generations and years of study,indicating these transgenic lines were not superior over control lines and need to be improved in future breeding.
基金supported by the National Key Research and Development of China(Grant No.2022YFB4601901)the National Natural Science Foundation of China(Grant No.12122202)。
文摘The use of ultra-high molecular weight polyethylene(UHMWPE)composite in the design of lightweight protective equipment,has gained a lot of interest.However,there is an urgent need to understand the ballistic response mechanism and theoretical prediction model of performance.This paper explores the ballistic response mechanism of UHMWPE composite through experimental and simulation analyses.Then,a resistance-driven modeling method was proposed to establish a theoretical model for predicting the bulletproof performance.The ballistic response mechanism of UHMWPE composite encompassed three fundamental modes:local response,structural response,and coupled response.The occurrence ratio of these fundamental response modes during impact was dependent on the projectile velocity and laminate thickness.The bulletproof performance of laminate under different response modes was assessed based on the penetration depth of the projectile,the bulging height on the rear face of the laminate,the thickness of remaining sub-laminate,and residual velocity of the projectile.The absolute deviations of bulletproof performance indicator between theoretical value and experimental value were well within 11.13%,demonstrating that the established evaluation model possessed high degree of prediction accuracy.
基金Project(52274096)supported by the National Natural Science Foundation of ChinaProject(WS2023A03)supported by the State Key Laboratory Cultivation Base for Gas Geology and Gas Control,China。
文摘Accurate assessment of coal brittleness is crucial in the design of coal seam drilling and underground coal mining operations.This study proposes a method for evaluating the brittleness of gas-bearing coal based on a statistical damage constitutive model and energy evolution mechanisms.Initially,integrating the principle of effective stress and the Hoek-Brown criterion,a statistical damage constitutive model for gas-bearing coal is established and validated through triaxial compression tests under different gas pressures to verify its accuracy and applicability.Subsequently,employing energy evolution mechanism,two energy characteristic parameters(elastic energy proportion and dissipated energy proportion)are analyzed.Based on the damage stress thresholds,the damage evolution characteristics of gas bearing coal were explored.Finally,by integrating energy characteristic parameters with damage parameters,a novel brittleness index is proposed.The results demonstrate that the theoretical curves derived from the statistical damage constitutive model closely align with the test curves,accurately reflecting the stress−strain characteristics of gas-bearing coal and revealing the stress drop and softening characteristics of coal in the post-peak stage.The shape parameter and scale parameter represent the brittleness and macroscopic strength of the coal,respectively.As gas pressure increases from 1 to 5 MPa,the shape parameter and the scale parameter decrease by 22.18%and 60.45%,respectively,indicating a reduction in both brittleness and strength of the coal.Parameters such as maximum damage rate and peak elastic energy storage limit positively correlate with coal brittleness.The brittleness index effectively captures the brittleness characteristics and reveals a decrease in brittleness and an increase in sensitivity to plastic deformation under higher gas pressure conditions.
基金supported by the National Natural Science Foundation of China (70871117 70571086)the Development Foundation of Dalian Naval Academy
文摘The function of the air target threat evaluation (TE) is the foundation for weapons allocation and senor resources management within the surface air defense. The multi-attribute evaluation methodology is utilized to address the issue of the TE in which the tactic features of the detected target are treated as evaluation attributes. Meanwhile, the intuitionistic fuzzy set (IFS) is employed to deal with information uncertainty in the TE process. Furthermore, on the basis of the entropy weight and inclusion-comparison probability, a hybrid TE method is developed. In order to accommodate the demands of naturalistic decision making, the proposed method allows air defense commanders to express their intuitive opinions besides incorporating into the threat features of the detected target. An illustrative example is provided to indicate the feasibility and advantage of the proposed method.
基金the National Natural Science Foundation of China(61872378).
文摘Some attributes are uncertain for evaluation work because of incomplete or limited information and knowledge.It leads to uncertainty in evaluation results.To that end,an evaluation method,uncertainty entropy-based exploratory evaluation(UEEE),is proposed to guide the evaluation activities,which can iteratively and gradually reduce uncertainty in evaluation results.Uncertainty entropy(UE)is proposed to measure the extent of uncertainty.First,the belief degree distributions are assumed to characterize the uncertainty in attributes.Then the belief degree distribution of the evaluation result can be calculated by using uncertainty theory.The obtained result is then checked based on UE to see if it could meet the requirements of decision-making.If its uncertainty level is high,more information needs to be introduced to reduce uncertainty.An algorithm based on the UE is proposed to find which attribute can mostly affect the uncertainty in results.Thus,efforts can be invested in key attribute(s),and the evaluation results can be updated accordingly.This update should be repeated until the evaluation result meets the requirements.Finally,as a case study,the effectiveness of ballistic missiles with uncertain attributes is evaluated by UEEE.The evaluation results show that the target is believed to be destroyed.
基金supported by the National Natural Science Foundation of China(70801013)LNSTF for doc-tor(20081020).
文摘The condition of weightes non-dictatorship is extended and a comprehensive evaluae method emboding self-determinate which is combined with competitive view optimization principles is built. The basic process includes simulating the model of economic man's self-benefit bahaviors, taking the place of experts to evaluate, bringing in the model of minimizing the sum of included angles to integrate the information of multiple objects and put the objects in order finally. The method has the advangtages of less dependendence on the subjective information, plenty of information, fair process and simple caculating. Finally, an application example is given to illustrate the effectiveness of the proposed method.
基金The project was supported by the National Natural Science Foundation of China( 70172015) the Research Fund for Doc-toral Program of Higher Education(20010533016).
文摘On the basis of analyzing the flaws of present multiple-attribute and multilevel evaluation methods, concerning the problem of characteristics of the multiple-attribute and multilevel system s appraisal and the particular emphasis on the respective attributes in the evaluation process, as well as its relevance to the environment, an optimal attribute system is proposed, and the multiplicative analytic hierarchy process (MAHP) is used to obtain subjective weight coefficients and the objective weight coefficient evaluating method is given. The deviation between the index value of each level and the values of the same index of other levels are formulated, and an optimal model is gained, thus establishing the weight coefficients of the whole optimal attribute system. Furthermore, the detailed implementation procedure of this method is introduced. Besides, favorable results have been gained by applying the model to the practical problems of economic evaluation.
文摘To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weapon systems by combining grey relational analysis and TOPSIS is proposed. The model aggregates the grey relational grade and the distance to a new integrated closeness and reflects not only the trend but also the situation of the alternative. The example illuminates that the model is effective for the effectiveness evaluation of weapon systems.
基金Project(51174285)supported by the National Natural Science Foundation of China and the Shenhua Group Corporation Limited,ChinaProject(CXZZ12_0949)supported by the Research and Innovation Project for College Graduates of Jiangsu Province,ChinaProject(SZBF2011-6-B35)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Rock burst is one of the most catastrophic dynamic hazards in coal mining. A static and dynamic stresses superposition-based(SDSS-based) risk evaluation method of rock burst was proposed to pre-evaluate rock burst risk. Theoretical basis of this method is the stress criterion incurring rock burst and rock burst risk is evaluated according to the closeness degree of the total stress(due to the superposition of static stress in the coal and dynamic stress induced by tremors) with the critical stress. In addition, risk evaluation criterion of rock burst was established by defining the "Satisfaction Degree" of static stress. Furthermore,the method was used to pre-evaluate rock burst risk degree and prejudge endangered area of an insular longwall face in Nanshan Coal Mine in China. Results show that rock burst risk is moderate at advance extent of 97 m, strong at advance extent of 97-131 m,and extremely strong(i.e. inevitable to occur) when advance extent exceeds 131 m(mining is prohibited in this case). The section of two gateways whose floor abuts 15-3 coal seam is a susceptible area prone to rock burst. Evaluation results were further compared with rock bursts and tremors detected by microseismic monitoring. Comparison results indicate that evaluation results are consistent with microseismic monitoring, which proves the method's feasibility.
基金supported by the National Key R&D Program of China(2017YFC1405005)the National Natural Science Foundation of China(71690233)
文摘The weapons system portfolio selection problem arises at the equipment demonstration stage and deals with the military application requirements.Further,the contribution rate of the system is one of the important indicators to evaluate the role of a system,which can facilitate the weapons system portfolio selection.Therefore,combining the system contribution rate with system portfolio selection is the focus of this study.It also focuses on calculating the contribution rates of multiple equipment systems with various types of capabilities.The contribution rate is measured by establishing a hierarchical multi-criteria value model from three dimensions.Based on the value model,the feasible portfolios are developed under certain cost constraints and the optimal weapons system portfolios are obtained by using the classification optimization selection strategy.Finally,an illustrative example is presented to verify the feasibility of the proposed model.
基金Project(51378510)supported by National Natural Science Foundation of China。
文摘This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the dangerousness of this geological disaster.The losses that are caused by water and mud inrush are taken into consideration to account for its harmfulness.Then a risk evaluation model based on the dangerousness-harmfulness evaluation indicator system is constructed,which is more convincing in comparison with the traditional methods.The catastrophe theory is used to evaluate the risk level of water and mud inrush and it has great advantage in handling problems involving discontinuous catastrophe processes.To validate the proposed approach,the Qiyueshan tunnel of Yichang-Wanzhou Railway is taken as an example in which four target segments are evaluated using the risk evaluation model.Finally,the evaluation results are compared with the excavation data,which shows that the risk levels predicted by the proposed approach are in good agreements with that observed in engineering.In conclusion,the catastrophe theory-based risk evaluation model is an efficient and effective approach for water and mud inrush in karst tunnels.
基金supported by the National Natural Science Foundation of China(71671090)the Aeronautical Science Foundation of China(2016ZG52068)+1 种基金the Liberal Arts and Social Sciences Foundation of the Ministry of Education(MOE)in China(15YJCZH189)the Qinglan Project for Excellent Youth or Middle-aged Academic Leaders in Jiangsu Province
文摘The clustering evaluation can be used to scientifically classify the objects to be evaluated according to the information aggregation of various evaluation rules. In grey weighted clustering evaluation, the index clustering rule relies on the construction of the whitenization weight function, while the existing construction method of the linear function lacks the construction mechanism analysis and validity explanation. A normative construction principle is put forward by analyzing the construction mechanism of the function. Through proving the normative principle of the function,the basic modal function(BMF) is proposed and characterized by different function forms. Then, a new type of the whitenization weight function and its grey clustering evaluation model algorithm are given by studying the mechanism and nature of the construction of different forms of the function. Finally, the comparative study for self-innovation capability of defense science and technology industry(DSTI) is taken as an example. The results show that the different construction ways of the function have an effect on the clustering result. The proposed construction mechanism can better explain the index clustering rules and evaluation effectiveness,which will perfect the theoretical system of grey clustering evaluation and be applied to practice effectively.
文摘In view of the disadvantage of one-sided evaluation when using single index to evaluate geomagnetic map suitability,a comprehensive evaluation method based on multi-index fusion is proposed.The multi-index such as standard deviation,roughness,correlation coefficient,entropy and cumulative gradient are considered.To overcome the poor objectivity of traditional fuzzy evaluation method when confirming the weight of index,the comprehensive evaluation value is given by using entropy technology to amend the weight.The simulation by matching algorithm of MSD and MAD shows that this method can evaluate the suitability comprehensively and reasonably.Bigger evaluation value can get higher matching probability,which indicate the good consistency between them.
文摘Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experiments, we depict an SoS effectiveness analysis and evaluation method using parallel expe- riments theory in detail. A case study is carried out which takes the missile defense system as an example. An artificial system of the missile defense system is constructed with the multi-agent modeling method. Then, single factor, multiple factors and defense position deployment computational experiments are carried out and evaluated with the statistical analysis method. Experiment re- sults show that the altitude of the secondary interception missile is not the key factor which affects SoS effectiveness and putting the defense position ahead will increase defense effectiveness. The case study demonstrates the feasibility of the proposed method.
基金Projects(40971170,51039001) supported by the National Natural Science Foundation of ChinaProject(2007AA10Z222) supported by the National High Technology Research and Development Program of China
文摘Using soil data of the Second National Field Survey,the soil fertility of wetland ecosystem of Dongting Lake was evaluated by using the technology of GIS and method of fuzzy evaluation.Integrated with the wetland actuality of Dongting Lake and particularity of paddy,seven factors (including soil organic matter,total nitrogen,total phosphorus,total potassium,available phosphorus,available potassium,and pH value),closely related with soil fertility,were chosen to establish the index system of synthetical evaluation.Based on the effect degree of each selected index on soil fertility,a judgment matrix was built,and the weight coefficient was determined by the method of correlation coefficient.Finally,under the support of the spatial analysis module of GIS (Geographic Information System),the spatial distribution properties of soil fertility in wetland ecosystem of Dongting Lake were studied.The results show that the soil fertility of Dongting Lake wetland ecosystem is not very good,and the area of type III and type IV achieves 69.8%.As a result,many countermeasures should be taken to improve the soil fertility.As for the spatial properties,the soil fertility level of central and west Dongting Lake is much higher than that of north and south part.The soil fertility of paddy field surpasses that of red soil,and the contents of soil organic matter and total nitrogen in paddy field are large.
基金Project(50490270) supported by the National Natural Science Foundation of China
文摘Stability condition and quality evaluation formula of layerlike backfilling roof,Q≥C,where Q denotes is quality index depending on allowable compressive or tensile strength and integrity of backfilling,and C is the technical index depending on mining method and backfilling technology,were inferred according to simply supported beam theorem.Technical treatment measures for instable backfilling roof,including optimum of appropriate filling materials and dosage for excellent flow property and reduction of backfill cost.It is proved that slope equation of backfill slurry in a stope to be filled is y=hexp[x2/(2σ)2)],where h is height of cone and σ2 is mean square,and that optimum drainage point of backfill slurry can be determined by the equation and sizes of stope.Case study indicates that the results can give a theoretical support for quality evaluation and control of layerlike backfilling.
基金Project(41661026)supported by the National Natural Science Foundation of ChinaProject supported by the Fund for the Construction of Western-China First-class Specialty of Ningxia University,China
文摘Teaching evaluation on a WebGIS course is a multi-objective nonlinear high-dimensional NP-hard problem. The index system for the teaching evaluation of a WebGIS course, including teacher- and student-oriented sub-systems, is first established and used for questionnaires from 2013 to 2017. The multi-objective nonlinear high-dimensional evaluation model is constructed and then solved via dynamic self-adaptive teaching–learning-based optimization (DSATLBO). DSATLBO is based on teaching–learning-based optimization with five improvements: dynamic nonlinear self-adaptive teaching factor, extracurricular tutorship factor, dynamic self-adaptive learning factor, multi-way learning factor, and non-dominated sorting factor. WebGIS teaching performance is fully evaluated based on questionnaires and DSATLBO. Optimal weights and weighted scores from DSATLBO are compared with those from the non-dominated sorting genetic algorithm-II using the Pareto front, coverage to two sets, and spacing of the non-dominated solution sets to validate the performance of DSATLBO. The results show that DSATLBO can be uniformly distributed along the Pareto front. Therefore, DSATLBO can efficiently and feasibly solve the multi-objective nonlinear high-dimensional teaching evaluation model of a WebGIS course. The proposed teaching evaluation method can help reflecting the quality of all aspects of classroom teaching and guide the professional development of students.
文摘The traditional voltage stability analysis method is mostly based on the deterministic mode1.and ignores the uncertainties of bus loads,power supplies,changes in network configuration and so on.However,the great expansion of renewable power generations such as wind and solar energy in a power system has increased their uncertainty,and仃aditional techniques are limited in capturing their variable behavior.This leads to greater needs of new techniques and methodologies to properly quan tify the voltage stability of power systems.