期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Ethylenediamine tetramethylenephosphonic acid as a selective collector for the improved separation of chalcopyrite against pyrite at low alkalinity 被引量:4
1
作者 Jianjun Wang Gaogui Jing +3 位作者 Renji Zheng Zijie Huang Wei Sun Zhiyong Gao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第7期873-882,共10页
Chalcopyrite is the main Cu-containing mineral and cannot be separated well from pyrite using traditional xanthate collectors with large amounts of lime depressant, resulting in difficulties of the tailing treatment a... Chalcopyrite is the main Cu-containing mineral and cannot be separated well from pyrite using traditional xanthate collectors with large amounts of lime depressant, resulting in difficulties of the tailing treatment and associated precious metals recovery. Therefore, in this study, the green and odourless ethylenediamine tetramethylenephosphonic acid(EDTMPA) was introduced as a novel chalcopyrite collector. Flotation results from the binary mineral mixture and real ore demonstrated that EDTMPA could realize the selective separation of chalcopyrite from pyrite relative to ethyl xanthate(EX) without any depressants within the wide p H range of 6.0–11.0, and might replace the traditional high-alkaline lime process. Electrochemical and Fourier transform infrared spectra measurements indicated that the difference in adsorption performance of EDTMPA on chalcopyrite and pyrite was larger than that of EX, suggesting a better selectivity for EDTMPA. Density functional theory calculations demonstrated that there were stronger chemical bonds between P—O groups of EDTMPA and the Fe/Cu atoms on chalcopyrite in the form of a stable six-membered ring. Crystal chemistry calculations further revealed that the activity of metal atoms of chalcopyrite was higher than that of pyrite. Therefore, these basic theoretical results and practical application provide a guidance for the industrial application of EDTMPA in chalcopyrite flotation. 展开更多
关键词 CHALCOPYRITE PYRITE Flotation ethylenediamine tetramethylenephosphonic acid COLLECTOR
在线阅读 下载PDF
Effect of butanol on flotation separation of quartz from hematite with N-dodecyl ethylenediamine 被引量:7
2
作者 Liu Wengang Liu Wenbao +3 位作者 Wang Xinyang Wei Dezhou Zhang Hao Liu Wei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1059-1063,共5页
In order to investigate the effect of butanol on quartz flotation when N-dodecyl ethylenediamine(ND)was used as collector, single mineral flotation and artificial mixed mineral(hematite and quartz were mixed at a mass... In order to investigate the effect of butanol on quartz flotation when N-dodecyl ethylenediamine(ND)was used as collector, single mineral flotation and artificial mixed mineral(hematite and quartz were mixed at a mass ratio of 3:2) separation were conducted in the laboratory. Experimental results indicated that addition of butanol could improve the collecting performance of ND on quartz and enhance the floatability of quartz. Best flotation recovery of quartz was obtained when butanol was mixed with ND at a mass ratio of 1:1. Moreover, the molecular structure of alcohols had a significant effect on mineral recovery. Best separation efficiency could be obtained when tert-butanol was added as it had the largest cross-sectional area. Zeta potential measurements indicated that alcohols could strengthen electrostatic adsorption between quartz and collector. Molecular dynamic simulations revealed that co-adsorption of alcohols along with ND had taken place on the quartz surface, and ND/tert-butyl combinations were more easily absorbed on the quartz surface. 展开更多
关键词 Butanol N-dodecyl ethylenediamine Flotation separation Co-adsorptionQuartz
在线阅读 下载PDF
Profile improvement during CO_2 flooding in ultra-low permeability reservoirs 被引量:13
3
作者 Zhao Fenglan Zhang Lei +1 位作者 Hou Jirui Cao Shujun 《Petroleum Science》 SCIE CAS CSCD 2014年第2期279-286,共8页
Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order t... Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields. 展开更多
关键词 ethylenediamine organic amine profile improvement ultra-low permeability reservoirs mitigation of gas channeling CO2 flooding
在线阅读 下载PDF
Application of EDTMPS as a novel calcite depressant in scheelite flotation 被引量:8
4
作者 Fen Jiao Wei Li +4 位作者 Xu Wang Congren Yang Zhengquan Zhang Liwen Fu Wenqing Qin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期639-647,共9页
In this study, the innovative use of ethylenediamine tetramethylene phosphonic sodium(EDTMPS) as a calcite depressant in scheelite flotation was investigated by flotation experiments, and its selective depression mech... In this study, the innovative use of ethylenediamine tetramethylene phosphonic sodium(EDTMPS) as a calcite depressant in scheelite flotation was investigated by flotation experiments, and its selective depression mechanism was revealed by contact angle measurement, FTIR analysis, Zeta potential test and XPS analysis. The flotation experiment results showed that scheelite and calcite could be efficiently separated under the following conditions: pulp p H=9.5, Na OL concentration of 1.5×10^(-4)mol/L, EDTMPS concentration of 3.0×10^(-5)mol/L, a scheelite concentrate with WO3grade of 65.49%, recovery of 83.29%and separation efficiency of 65.29% could be obtained from the artificially mixed minerals. The analysis results of mineral surface properties demonstrated that EDTMPS was strongly adsorbed onto the calcite surface through the reaction between the phosphonate group and the calcium ions, which hindered Na OL adsorption and increased the hydrophilicity of calcite. However, EDTMPS had weak adsorption strength on the scheelite surface, which didn’t affect further adsorption of Na OL, hence, the scheelite remained hydrophobic. Consequently, the selective adsorption of EDTMPS on the two minerals’ surfaces increased a difference in wettability and thus enabling them to be separated by flotation. Finally, the mechanism model of this flotation separation process was established. 展开更多
关键词 ethylenediamine tetramethylene phosphonic sodium SCHEELITE CALCITE FLOTATION Selective depression
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部