Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer...Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.展开更多
van der Waals(vdW)heterostructures constructed by lowdimensional(0D,1D,and 2D)materials are emerging as one of the most appealing systems in next-generation flexible photodetection.Currently,hand-stacked vdW-type phot...van der Waals(vdW)heterostructures constructed by lowdimensional(0D,1D,and 2D)materials are emerging as one of the most appealing systems in next-generation flexible photodetection.Currently,hand-stacked vdW-type photodetectors are not compatible with large-areaarray fabrication and show unimpressive performance in self-powered mode.Herein,vertical 1D GaN nanorods arrays(NRAs)/2D MoS_(2)/PEDOT:PSS in wafer scale have been proposed for self-powered flexible photodetectors arrays firstly.The as-integrated device without external bias under weak UV illumination exhibits a competitive responsivity of 1.47 A W^(−1)and a high detectivity of 1.2×10^(11)Jones,as well as a fast response speed of 54/71μs,thanks to the strong light absorption of GaN NRAs and the efficient photogenerated carrier separation in type-II heterojunction.Notably,the strain-tunable photodetection performances of device have been demonstrated.Impressively,the device at−0.78%strain and zero bias reveals a significantly enhanced photoresponse with a responsivity of 2.47 A W^(−1),a detectivity of 2.6×10^(11)Jones,and response times of 40/45μs,which are superior to the state-of-the-art self-powered flexible photodetectors.This work presents a valuable avenue to prepare tunable vdWs heterostructures for self-powered flexible photodetection,which performs well in flexible sensors.展开更多
Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular st...Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.展开更多
Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P...Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.展开更多
The pressure and temperature increase resulting from the impact of different threats onto target materials is analyzed with a unified laboratory-scale setup.This allows deriving qualitative information on the occurrin...The pressure and temperature increase resulting from the impact of different threats onto target materials is analyzed with a unified laboratory-scale setup.This allows deriving qualitative information on the occurring phenomenology as well as quantitative statements about the relative effects sizes as a function of target material and threat.The considered target materials are steel,aluminum,and magnesium.As threats,kinetic energy penetrator,explosively formed projectile,and shaped charge jet are used.For the investigated combinations,the measured overpressures vary by a factor of up to 5 for a variation of the material,by a factor of up to 7 for a variation of the threat,and by a factor larger than 15for a simultaneous variation of both.The obtained results as well as the experimental approach are relevant for the basic understanding of impact effects and risks due to material reactivity.The paper combines two main aims.Firstly,to provide a summary of own prior work in a coherent journal article and,secondly,to review and discuss these earlier results with a new perspective.展开更多
The Hydrodynamic Ram(HRAM)effect occurs when a high kinetic energy projectile penetrates a fluid filled area,e.g.,a liquid filled tank.The projectile transfers its momentum and kinetic energy to the fluid,what causes ...The Hydrodynamic Ram(HRAM)effect occurs when a high kinetic energy projectile penetrates a fluid filled area,e.g.,a liquid filled tank.The projectile transfers its momentum and kinetic energy to the fluid,what causes a sudden,local pressure rise,further expanding as primary shock wave in the fluid and developing a cavity.It is possible that the entire tank ruptures due to the loads transferred through the fluid to its surrounding structure.In the past decades,additionally to experimental investigations,HRAM has been studied using various computational approaches particularly focusing on the description of the Fluid-Structure Interaction(FSI).This article reviews the published experimental,analytical and numerical results and delivers a chronological overview since the end of World War II.Furthermore,HRAM mitigation measures are highlighted,which have been developed with the experimental,analytical and numerical toolboxes matured over the past 80 years.展开更多
Two-dimensional(2D)ferrovalley materials with valley-dependent Hall effect have attracted great interest due to their significant applications in spintronics.In this paper,by using first-principles computational simul...Two-dimensional(2D)ferrovalley materials with valley-dependent Hall effect have attracted great interest due to their significant applications in spintronics.In this paper,by using first-principles computational simulations,we predict that the ScBrCl monolayer is a 2D ferrovalley material with valley-dependent multiple Hall effects.After calculations,we found that the ScBrCl monolayer has excellent thermodynamic stability and kinetic stability,and has a high magnetic transition temperature.When the magnetization direction is turned from in-plane to out-of-plane,a large valley polarization of 44 meV can be generated.In particular,under 5.1%–5.3%tensile strain conditions,ScBrCl monolayer can achieve quantum anomalous Hall effect,and further prove its existence through non-zero Chern number and non-trivial edge state.Our discovery enriches the research on valley-dependent Hall effect and promotes the potential application of 2D Janus monolayer in valley electronics.展开更多
Temperate woodland vegetation is initially determined by spatiotemporal and historical factors,mediated by complex biotic interactions.However,catastrophic events such as disease outbreaks(e.g.,sweet chestnut blight,a...Temperate woodland vegetation is initially determined by spatiotemporal and historical factors,mediated by complex biotic interactions.However,catastrophic events such as disease outbreaks(e.g.,sweet chestnut blight,ash dieback),infestations of insect pests,and human-accelerated climate change can create canopy gaps due to systematic decline in,or loss of,tree species that was once an important part of the canopy.Resultant cascade effects have the potential to alter the composition of woodland ecosystems quickly and radically,but inherent lag times make primary research into these effects challenging.Here,we explore change in woodland vegetation at 10 sites in response to canopy opening using the Elm Decline,a rapid loss of Ulmus in woodlands across northwestern Europe~5800 years ago that coexisted alongside other stressors such as increasing human activity,as a palaeoecological analogue.For arboreal taxa,community evenness significantly decreased,within-site turnover significantly increased,and richness remained unchanged.Changes in arboreal taxa were highly site-specific but there was a substantial decline in woody climbing taxa,especially Hedera(ivy),across the majority of sites.For shrub taxa,richness significantly increased but evenness and turnover remained consistent.Interestingly,however,there was a significant increase in abundance of shrubs at 70%of sites,including Calluna(heather),Ilex(holly)and Corylus(hazel),suggesting structural change.Surprisingly,there was no change in richness,evenness or turnover for herb taxa,possibly because change was highly variable spatially.However,there was a marked uptick in the disturbance indicator Plantago(plantain).Overall,these findings suggest that woodlands with sustained reduction in,or loss of,a tree species that once formed an important part of the canopy has profound,but often spatially idiosyncratic,impacts on vegetation diversity(richness),composition(evenness),stability(turnover),and on abundance of specific taxa,especially within the shrub layer.Use of this palaeoecological analogue,which was itself complicated by cooccurring changes in human activity,provides a valuable empirical insight into possible cascade effects of similar change in canopy opening in contemporary settings,including Ash Dieback.展开更多
Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells.The functional groups can passivate undercoordinated ions to reduce nonra...Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells.The functional groups can passivate undercoordinated ions to reduce nonradiative recombination losses.However,how these groups synergistically affect the enhancement beyond passivation is still unclear.Specifically,isomeric molecules with different substitution patterns or molecular shapes remain elusive in designing new organic additives.Here,we report two isomeric carbazolyl bisphosphonate additives,2,7-Cz BP and 3,6-Cz BP.The isomerism effect on passivation and charge transport process was studied.The two molecules have similar passivation effects through multiple interactions,e.g.,P=O···Pb,P=O···H–N and N–H···I.2,7-CzBP can further bridge the perovskite crystallites to facilitates charge transport.Power conversion efficiencies(PCEs)of 25.88%and 21.04%were achieved for 0.09 cm^(2)devices and 14 cm^(2)modules after 2,7-Cz BP treatment,respectively.The devices exhibited enhanced operational stability maintaining 95%of initial PCE after 1000 h of continuous maximum power point tracking.This study of isomerism effect hints at the importance of tuning substitution positions and molecular shapes for organic additives,which paves the way for innovation of next-generation multifunctional aromatic additives.展开更多
Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the ...Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs.展开更多
The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spect...The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips.展开更多
Semiconductor moirésuperlattices provide great platforms for exploring exotic collective excitations.Optical Stark effect,a shift of the electronic transition in the presence of a light field,provides an ultrafas...Semiconductor moirésuperlattices provide great platforms for exploring exotic collective excitations.Optical Stark effect,a shift of the electronic transition in the presence of a light field,provides an ultrafast and coherent method of manipulating matter states,which,however,has not been demonstrated in moirématerials.Here,we report the valleyselective optical Stark effect of moiréexcitons in the WSe_(2)/WS_(2)superlattice by using transient reflection spectroscopy.Prominent valley-selective energy shifts up to 7.8 meV have been observed for moiréexcitons,corresponding to pseudomagnetic fields as large as 34 T.Our results provide a route to coherently manipulate exotic states in moirésuperlattices.展开更多
The Bessel-like vector vortex beam(BlVVB)has gained increasing significance across numerous applications.However,its practical application is restricted by manufacturing difficulties and polarization manipulation.Thus...The Bessel-like vector vortex beam(BlVVB)has gained increasing significance across numerous applications.However,its practical application is restricted by manufacturing difficulties and polarization manipulation.Thus,the ability to manipulate its degrees of freedom is highly desirable.In this paper,the full-domain polarization modulation of BlVVB within a hot atomic ensemble has been investigated.We begin with the theoretical analysis of the resonant magneto-optical effect of atoms with a horizontal linear-polarized beam and experimentally demonstrate precise manipulation of the polarization state across the entire domain of the BlVVB,achieving an error margin of less than 3°at various cross-sectional points.Our study provides a novel approach for the modulation of BlVVB based on atomic media,which holds potential applications in sensitive vector magnetometers,optical communications,and signal processing.展开更多
Recent advancements in two-dimensional van der Waals moir´e materials have unveiled the captivating landscape of moir´e physics.In twisted bilayer graphene(TBG)at‘magic angles’,strong electronic correlatio...Recent advancements in two-dimensional van der Waals moir´e materials have unveiled the captivating landscape of moir´e physics.In twisted bilayer graphene(TBG)at‘magic angles’,strong electronic correlations give rise to a diverse array of exotic physical phenomena,including correlated insulating states,superconductivity,magnetism,topological phases,and the quantum anomalous Hall(QAH)effect.Notably,the QAH effect demonstrates substantial promise for applications in electronic and quantum computing devices with low power consumption.This article focuses on the latest developments surrounding the QAH effect in magic-angle TBG.It provides a comprehensive analysis of magnetism and topology—two crucial factors in engineering the QAH effect within magic-angle TBG.Additionally,it offers a detailed overview of the experimental realization of the QAH effect in moir´e superlattices.Furthermore,this review highlights the underlying mechanisms driving these exotic phases in moir´e materials,contributing to a deeper understanding of strongly interacting quantum systems and facilitating the manipulation of new material properties to achieve novel quantum states.展开更多
Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads ...Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads and shock wave propagation process in semi-enclosed structures at various altitude environment is key research focus in the fields of explosion shock and fluid dynamics.The effect of altitude on the propagation of shock waves in tunnels was investigated by conducting explosion test and numerical simulation.Based on the experimental and numerical simulation results,a prediction model for the attenuation of the peak overpressure of tunnel shock waves at different altitudes was established.The results showed that the peak overpressure decreased at the same measurement points in the tunnel entrance under the high altitude condition.In contrast,an increase in altitude accelerated the propagation speed of the shock wave in the tunnel.The average error between the peak shock wave overpressure obtained using the overpressure prediction formula and the measured test data was less than15%,the average error between the propagation velocity of shock waves predicted values and the test data is less than 10%.The method can effectively predict the overpressure attenuation of blast wave in tunnel at various altitudes.展开更多
Background Ongoing debates question the harm of internet use with the evolving technology,as many individuals transition from regular to problematic internet use(PIU).The habenula(Hb),located between the thalamus and ...Background Ongoing debates question the harm of internet use with the evolving technology,as many individuals transition from regular to problematic internet use(PIU).The habenula(Hb),located between the thalamus and the third ventricle,is implicated in various psychiatric disorders.In addition,personality features have been suggested to play a role in the pathophysiology of PIU.Aims This study aimed to investigate Hb volumetry in individuals with subclinical PIU and the mediating effect of personality traits on this relationship.Methods 110 healthy adults in this cross-sectional study underwent structural magnetic resonance imaging.Hb segmentation was performed using a deep learning technique.The Internet Addiction Test(IAT)and the NEO Five-Factor Inventory were used to assess the PIU level and personality,respectively.Partial Spearman's correlation analyses were performed to explore the reiationships between Hb volumetry,IAT and NEO.Multiple regression analysis was applied to identify personality traits that predict IAT scores.The significant trait was then treated as a mediator between Hb volume and IAT correlation in mediation analysis with a bootstrap value of 5000.Results Relative Hb volume was negatively correlated with IAT scores(partial rho=-0.142,p=0.009).The IAT score was positively correlated with neuroticism(partial rho=0.430,p<0.001)and negatively correlated with extraversion,agreeableness and conscientiousness(partial rho=-0.213,p<0.001;partial rho=-0.279,p<0.001;and partial rho=-0.327,p<0.001).There was a significant indirect effect of Hb volume on this model(β=-0.061,p=0.048,boot 95%confidence interval:-0.149 to-0.001).Conclusions This study uncovered a crucial link between reduced Hb volume and heightened PIU.Our findings highlight neuroticism as a key risk factor for developing PIU.Moreover,neuroticism was shown to mediate the relationship between Hb volume and PIU tendency,offering valuable insight into the complexities of this interaction.展开更多
To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The ...To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The yielding resistance enhancement effect(ω)caused by working environment constraints is evaluated through multi-layer composite sleeve hole expansion analysis,forming a theoretical framework for calculating the working yielding force.Laboratory and in-situ pull-out tests are conducted to determine the yielding performance and validate the analytical theory.The main conclusions are:(1)Yielding force and energy-release capacity increase withω,significantly outperforming the unconfined state.(2)In-situ tests under varying rockmass and geostress conditions(F1–F3)determine the yielding force increases to 183.4–290.1,204.0–290.8,and 235.0–327.1 kN.(3)The slight deviation(–12.5%to 6.2%)between the theoretical and measured yielding force confirms that the analytical theory effectively describes the working yielding performance.(4)ωincreases with higher geostress and improved rock mechanical properties,with initial geostress(σ_(0))and elastic modulus of surrounding rock(E_(3))identified as critical parameters.展开更多
As the size of transistors shrinks and power density increases,thermal simulation has become an indispensable part of the device design procedure.However,existing works for advanced technology transistors use simplifi...As the size of transistors shrinks and power density increases,thermal simulation has become an indispensable part of the device design procedure.However,existing works for advanced technology transistors use simplified empirical models to calculate effective thermal conductivity in the simulations.In this work,we present a dataset of size-dependent effective thermal conductivity with electron and phonon properties extracted from ab initio computations.Absolute in-plane and cross-plane thermal conductivity data of eight semiconducting materials(Si,Ge,GaN,AlN,4H-SiC,GaAs,InAs,BAs)and four metallic materials(Al,W,TiN,Ti)with the characteristic length ranging from 5 nm to 50 nm have been provided.Besides the absolute value,normalized effective thermal conductivity is also given,in case it needs to be used with updated bulk thermal conductivity in the future.展开更多
Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of hi...Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of high-speed WIG airfoil considering non-ground effect is carried out by a novel two-step inverse airfoil design method that combines conditional generative adversarial network(CGAN)and artificial neural network(ANN).The CGAN model is employed to generate a variety of airfoil designs that satisfy the desired lift-drag ratios in both ground effect and non-ground effect conditions.Subsequently,the ANN model is utilized to forecast aerodynamic parameters of the generated airfoils.The results indicate that the CGAN model contributes to a high accuracy rate for airfoil design and enables the creation of novel airfoil designs.Furthermore,it demonstrates high accuracy in predicting aerodynamic parameters of these airfoils due to the ANN model.This method eliminates the necessity for numerical simulations and experimental testing through the design procedure,showcasing notable efficiency.The analysis of airfoils generated by the CGAN model shows that airfoils exhibiting high lift-drag ratios under both flight conditions typically have cambers of among[0.08c,0.105c],with the positions of maximum camber occurring among[0.35c,0.5c]of the chord length,and the leading-edge radiuses of these airfoils primarily cluster among[0.008c,0.025c]展开更多
Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect...Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.展开更多
基金supported by the Shenzhen Science and Technology Program(JCYJ20230808105111022,JCYJ20220818095806013)Natural Science Foundation of Guangdong(2023A1515012267)+1 种基金the National Natural Science Foundation of China(22178223)the Royal Society/NSFC cost share program(IEC\NSFC\223372).
文摘Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.
基金supported by the National Key Research and Development Program of China(No.2022YFB3604500,No.2022YFB3604501)the National Natural Science Foundation of China(No.52172141)the Technology Development Project of Shanxi-Zheda Institude of Advanced Materials and Chemical Engineering(No.2022SX-TD017).
文摘van der Waals(vdW)heterostructures constructed by lowdimensional(0D,1D,and 2D)materials are emerging as one of the most appealing systems in next-generation flexible photodetection.Currently,hand-stacked vdW-type photodetectors are not compatible with large-areaarray fabrication and show unimpressive performance in self-powered mode.Herein,vertical 1D GaN nanorods arrays(NRAs)/2D MoS_(2)/PEDOT:PSS in wafer scale have been proposed for self-powered flexible photodetectors arrays firstly.The as-integrated device without external bias under weak UV illumination exhibits a competitive responsivity of 1.47 A W^(−1)and a high detectivity of 1.2×10^(11)Jones,as well as a fast response speed of 54/71μs,thanks to the strong light absorption of GaN NRAs and the efficient photogenerated carrier separation in type-II heterojunction.Notably,the strain-tunable photodetection performances of device have been demonstrated.Impressively,the device at−0.78%strain and zero bias reveals a significantly enhanced photoresponse with a responsivity of 2.47 A W^(−1),a detectivity of 2.6×10^(11)Jones,and response times of 40/45μs,which are superior to the state-of-the-art self-powered flexible photodetectors.This work presents a valuable avenue to prepare tunable vdWs heterostructures for self-powered flexible photodetection,which performs well in flexible sensors.
文摘Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.
基金supported by the National Natural Science Foundation of China(No.41473068)supported by China Postdoctoral Science Foundation(No.2022M722667)。
文摘Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.
文摘The pressure and temperature increase resulting from the impact of different threats onto target materials is analyzed with a unified laboratory-scale setup.This allows deriving qualitative information on the occurring phenomenology as well as quantitative statements about the relative effects sizes as a function of target material and threat.The considered target materials are steel,aluminum,and magnesium.As threats,kinetic energy penetrator,explosively formed projectile,and shaped charge jet are used.For the investigated combinations,the measured overpressures vary by a factor of up to 5 for a variation of the material,by a factor of up to 7 for a variation of the threat,and by a factor larger than 15for a simultaneous variation of both.The obtained results as well as the experimental approach are relevant for the basic understanding of impact effects and risks due to material reactivity.The paper combines two main aims.Firstly,to provide a summary of own prior work in a coherent journal article and,secondly,to review and discuss these earlier results with a new perspective.
文摘The Hydrodynamic Ram(HRAM)effect occurs when a high kinetic energy projectile penetrates a fluid filled area,e.g.,a liquid filled tank.The projectile transfers its momentum and kinetic energy to the fluid,what causes a sudden,local pressure rise,further expanding as primary shock wave in the fluid and developing a cavity.It is possible that the entire tank ruptures due to the loads transferred through the fluid to its surrounding structure.In the past decades,additionally to experimental investigations,HRAM has been studied using various computational approaches particularly focusing on the description of the Fluid-Structure Interaction(FSI).This article reviews the published experimental,analytical and numerical results and delivers a chronological overview since the end of World War II.Furthermore,HRAM mitigation measures are highlighted,which have been developed with the experimental,analytical and numerical toolboxes matured over the past 80 years.
基金Project supported by the National Natural Science Foundation of China(Grant No.52173283).
文摘Two-dimensional(2D)ferrovalley materials with valley-dependent Hall effect have attracted great interest due to their significant applications in spintronics.In this paper,by using first-principles computational simulations,we predict that the ScBrCl monolayer is a 2D ferrovalley material with valley-dependent multiple Hall effects.After calculations,we found that the ScBrCl monolayer has excellent thermodynamic stability and kinetic stability,and has a high magnetic transition temperature.When the magnetization direction is turned from in-plane to out-of-plane,a large valley polarization of 44 meV can be generated.In particular,under 5.1%–5.3%tensile strain conditions,ScBrCl monolayer can achieve quantum anomalous Hall effect,and further prove its existence through non-zero Chern number and non-trivial edge state.Our discovery enriches the research on valley-dependent Hall effect and promotes the potential application of 2D Janus monolayer in valley electronics.
文摘Temperate woodland vegetation is initially determined by spatiotemporal and historical factors,mediated by complex biotic interactions.However,catastrophic events such as disease outbreaks(e.g.,sweet chestnut blight,ash dieback),infestations of insect pests,and human-accelerated climate change can create canopy gaps due to systematic decline in,or loss of,tree species that was once an important part of the canopy.Resultant cascade effects have the potential to alter the composition of woodland ecosystems quickly and radically,but inherent lag times make primary research into these effects challenging.Here,we explore change in woodland vegetation at 10 sites in response to canopy opening using the Elm Decline,a rapid loss of Ulmus in woodlands across northwestern Europe~5800 years ago that coexisted alongside other stressors such as increasing human activity,as a palaeoecological analogue.For arboreal taxa,community evenness significantly decreased,within-site turnover significantly increased,and richness remained unchanged.Changes in arboreal taxa were highly site-specific but there was a substantial decline in woody climbing taxa,especially Hedera(ivy),across the majority of sites.For shrub taxa,richness significantly increased but evenness and turnover remained consistent.Interestingly,however,there was a significant increase in abundance of shrubs at 70%of sites,including Calluna(heather),Ilex(holly)and Corylus(hazel),suggesting structural change.Surprisingly,there was no change in richness,evenness or turnover for herb taxa,possibly because change was highly variable spatially.However,there was a marked uptick in the disturbance indicator Plantago(plantain).Overall,these findings suggest that woodlands with sustained reduction in,or loss of,a tree species that once formed an important part of the canopy has profound,but often spatially idiosyncratic,impacts on vegetation diversity(richness),composition(evenness),stability(turnover),and on abundance of specific taxa,especially within the shrub layer.Use of this palaeoecological analogue,which was itself complicated by cooccurring changes in human activity,provides a valuable empirical insight into possible cascade effects of similar change in canopy opening in contemporary settings,including Ash Dieback.
基金financially supported by the National Science Foundation of China(62474142)Natural Science Foundation of Shandong Province(No.ZR2024YQ070)。
文摘Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells.The functional groups can passivate undercoordinated ions to reduce nonradiative recombination losses.However,how these groups synergistically affect the enhancement beyond passivation is still unclear.Specifically,isomeric molecules with different substitution patterns or molecular shapes remain elusive in designing new organic additives.Here,we report two isomeric carbazolyl bisphosphonate additives,2,7-Cz BP and 3,6-Cz BP.The isomerism effect on passivation and charge transport process was studied.The two molecules have similar passivation effects through multiple interactions,e.g.,P=O···Pb,P=O···H–N and N–H···I.2,7-CzBP can further bridge the perovskite crystallites to facilitates charge transport.Power conversion efficiencies(PCEs)of 25.88%and 21.04%were achieved for 0.09 cm^(2)devices and 14 cm^(2)modules after 2,7-Cz BP treatment,respectively.The devices exhibited enhanced operational stability maintaining 95%of initial PCE after 1000 h of continuous maximum power point tracking.This study of isomerism effect hints at the importance of tuning substitution positions and molecular shapes for organic additives,which paves the way for innovation of next-generation multifunctional aromatic additives.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52274295)the Natural Science Foundation of Hebei Province(E2021501029)+3 种基金the Fundamental Research Funds for the Central Universities(N2423051,N2423053,N2302016,N2423019,N2323013,N2423005)the Science and Technology Project of Hebei Education Department(QN2024238)the Basic Research Program Project of Shijiazhuang City for Universities Stationed in Hebei Province(241790937A)the Science and Technology Project of Qinhuangdao City in 2023.
文摘Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs.
基金Project supported by the National Natural Science Foundation of China(Grant No.12305303)the Natural Science Foundation of Hunan Province of China(Grant Nos.2023JJ40520,2024JJ2044,and 2021JJ40444)+3 种基金the Science and Technology Innovation Program of Hunan Province,China(Grant No.2020RC3054)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(Grant No.CX20240831)the Natural Science Basic Research Plan in the Shaanxi Province of China(Grant No.2023-JC-QN0015)the Doctoral Research Fund of University of South China(Grant No.200XQD033)。
文摘The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips.
基金Project supported by the National Key R&D Program of China(Grant Nos.2022YFA1402400 and 2022YFA1405400)the National Natural Science Foundation of China(Grant Nos.11934011 and 12274365)+3 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LR24A040001)Open project of Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education)of Shanghai Jiao Tong Universitysupport from the JSPS KAKENHI(Grant Nos.20H00354 and 23H02052)World Premier International Research Center Initiative(WPI),MEXT,Japan。
文摘Semiconductor moirésuperlattices provide great platforms for exploring exotic collective excitations.Optical Stark effect,a shift of the electronic transition in the presence of a light field,provides an ultrafast and coherent method of manipulating matter states,which,however,has not been demonstrated in moirématerials.Here,we report the valleyselective optical Stark effect of moiréexcitons in the WSe_(2)/WS_(2)superlattice by using transient reflection spectroscopy.Prominent valley-selective energy shifts up to 7.8 meV have been observed for moiréexcitons,corresponding to pseudomagnetic fields as large as 34 T.Our results provide a route to coherently manipulate exotic states in moirésuperlattices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12033007,61801458,12103058,12203058,12074309,and 61875205)the Key Project of Frontier Science Research of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH007)+2 种基金the Strategic Priority Research Program of CAS(Grant No.XDC07020200)the Youth Innovation Promotion Association,CAS(Grant Nos.2021408,2022413,and 2023425)the Research on Highly Sensitive Long-Wave Receiver Based on Rydberg Atoms(Grant No.1P2024000059)。
文摘The Bessel-like vector vortex beam(BlVVB)has gained increasing significance across numerous applications.However,its practical application is restricted by manufacturing difficulties and polarization manipulation.Thus,the ability to manipulate its degrees of freedom is highly desirable.In this paper,the full-domain polarization modulation of BlVVB within a hot atomic ensemble has been investigated.We begin with the theoretical analysis of the resonant magneto-optical effect of atoms with a horizontal linear-polarized beam and experimentally demonstrate precise manipulation of the polarization state across the entire domain of the BlVVB,achieving an error margin of less than 3°at various cross-sectional points.Our study provides a novel approach for the modulation of BlVVB based on atomic media,which holds potential applications in sensitive vector magnetometers,optical communications,and signal processing.
基金supported by the Science Research Project of Hebei Education Department(Grant No.BJK2024168)the National Natural Science Foundation of China(Grant No.11904076)+1 种基金the Natural Science Foundation of Hebei(Grant No.A2019205313)Science Foundation of Hebei Normal University(Grant No.L2024J02).
文摘Recent advancements in two-dimensional van der Waals moir´e materials have unveiled the captivating landscape of moir´e physics.In twisted bilayer graphene(TBG)at‘magic angles’,strong electronic correlations give rise to a diverse array of exotic physical phenomena,including correlated insulating states,superconductivity,magnetism,topological phases,and the quantum anomalous Hall(QAH)effect.Notably,the QAH effect demonstrates substantial promise for applications in electronic and quantum computing devices with low power consumption.This article focuses on the latest developments surrounding the QAH effect in magic-angle TBG.It provides a comprehensive analysis of magnetism and topology—two crucial factors in engineering the QAH effect within magic-angle TBG.Additionally,it offers a detailed overview of the experimental realization of the QAH effect in moir´e superlattices.Furthermore,this review highlights the underlying mechanisms driving these exotic phases in moir´e materials,contributing to a deeper understanding of strongly interacting quantum systems and facilitating the manipulation of new material properties to achieve novel quantum states.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52378401,52278504)the Fundamental Research Funds for the Central Universities(Grant No.30922010918)。
文摘Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads and shock wave propagation process in semi-enclosed structures at various altitude environment is key research focus in the fields of explosion shock and fluid dynamics.The effect of altitude on the propagation of shock waves in tunnels was investigated by conducting explosion test and numerical simulation.Based on the experimental and numerical simulation results,a prediction model for the attenuation of the peak overpressure of tunnel shock waves at different altitudes was established.The results showed that the peak overpressure decreased at the same measurement points in the tunnel entrance under the high altitude condition.In contrast,an increase in altitude accelerated the propagation speed of the shock wave in the tunnel.The average error between the peak shock wave overpressure obtained using the overpressure prediction formula and the measured test data was less than15%,the average error between the propagation velocity of shock waves predicted values and the test data is less than 10%.The method can effectively predict the overpressure attenuation of blast wave in tunnel at various altitudes.
基金funded by a Grant-in-Aid for Scientific Research(B)(Japan Society for The Promotion of Science,21H02849)Grant-in-Aid for Scientific Research(C)(Japan Society for The Promotion of Science,23K07013)+2 种基金Grant-in-Aid for Transformative Research Areas(A)(Japan Society for The Promotion of Science,JP21H05173)Grant-in-Aid by the Smoking Research FoundationGrant-in-Aid by the Telecommunications Advancement Foundation.
文摘Background Ongoing debates question the harm of internet use with the evolving technology,as many individuals transition from regular to problematic internet use(PIU).The habenula(Hb),located between the thalamus and the third ventricle,is implicated in various psychiatric disorders.In addition,personality features have been suggested to play a role in the pathophysiology of PIU.Aims This study aimed to investigate Hb volumetry in individuals with subclinical PIU and the mediating effect of personality traits on this relationship.Methods 110 healthy adults in this cross-sectional study underwent structural magnetic resonance imaging.Hb segmentation was performed using a deep learning technique.The Internet Addiction Test(IAT)and the NEO Five-Factor Inventory were used to assess the PIU level and personality,respectively.Partial Spearman's correlation analyses were performed to explore the reiationships between Hb volumetry,IAT and NEO.Multiple regression analysis was applied to identify personality traits that predict IAT scores.The significant trait was then treated as a mediator between Hb volume and IAT correlation in mediation analysis with a bootstrap value of 5000.Results Relative Hb volume was negatively correlated with IAT scores(partial rho=-0.142,p=0.009).The IAT score was positively correlated with neuroticism(partial rho=0.430,p<0.001)and negatively correlated with extraversion,agreeableness and conscientiousness(partial rho=-0.213,p<0.001;partial rho=-0.279,p<0.001;and partial rho=-0.327,p<0.001).There was a significant indirect effect of Hb volume on this model(β=-0.061,p=0.048,boot 95%confidence interval:-0.149 to-0.001).Conclusions This study uncovered a crucial link between reduced Hb volume and heightened PIU.Our findings highlight neuroticism as a key risk factor for developing PIU.Moreover,neuroticism was shown to mediate the relationship between Hb volume and PIU tendency,offering valuable insight into the complexities of this interaction.
基金supported by the National Natural Science Foundation of China(Nos.U2468217,U2034205,and 52308391)。
文摘To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The yielding resistance enhancement effect(ω)caused by working environment constraints is evaluated through multi-layer composite sleeve hole expansion analysis,forming a theoretical framework for calculating the working yielding force.Laboratory and in-situ pull-out tests are conducted to determine the yielding performance and validate the analytical theory.The main conclusions are:(1)Yielding force and energy-release capacity increase withω,significantly outperforming the unconfined state.(2)In-situ tests under varying rockmass and geostress conditions(F1–F3)determine the yielding force increases to 183.4–290.1,204.0–290.8,and 235.0–327.1 kN.(3)The slight deviation(–12.5%to 6.2%)between the theoretical and measured yielding force confirms that the analytical theory effectively describes the working yielding performance.(4)ωincreases with higher geostress and improved rock mechanical properties,with initial geostress(σ_(0))and elastic modulus of surrounding rock(E_(3))identified as critical parameters.
基金Project supported by the National Key R&D Project from Ministry of Science and Technology of China(Grant No.2022YFA1203100)the National Natural Science Foundation of China(Grant No.52122606)the funding from Shanghai Polytechnic University.
文摘As the size of transistors shrinks and power density increases,thermal simulation has become an indispensable part of the device design procedure.However,existing works for advanced technology transistors use simplified empirical models to calculate effective thermal conductivity in the simulations.In this work,we present a dataset of size-dependent effective thermal conductivity with electron and phonon properties extracted from ab initio computations.Absolute in-plane and cross-plane thermal conductivity data of eight semiconducting materials(Si,Ge,GaN,AlN,4H-SiC,GaAs,InAs,BAs)and four metallic materials(Al,W,TiN,Ti)with the characteristic length ranging from 5 nm to 50 nm have been provided.Besides the absolute value,normalized effective thermal conductivity is also given,in case it needs to be used with updated bulk thermal conductivity in the future.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Fundamental Research Funds for the Central Universities(No.ILA220101A23)CARDC Fundamental and Frontier Technology Research Fund(No.PJD20200210)the Aeronautical Science Foundation of China(No.20200023052002).
文摘Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of high-speed WIG airfoil considering non-ground effect is carried out by a novel two-step inverse airfoil design method that combines conditional generative adversarial network(CGAN)and artificial neural network(ANN).The CGAN model is employed to generate a variety of airfoil designs that satisfy the desired lift-drag ratios in both ground effect and non-ground effect conditions.Subsequently,the ANN model is utilized to forecast aerodynamic parameters of the generated airfoils.The results indicate that the CGAN model contributes to a high accuracy rate for airfoil design and enables the creation of novel airfoil designs.Furthermore,it demonstrates high accuracy in predicting aerodynamic parameters of these airfoils due to the ANN model.This method eliminates the necessity for numerical simulations and experimental testing through the design procedure,showcasing notable efficiency.The analysis of airfoils generated by the CGAN model shows that airfoils exhibiting high lift-drag ratios under both flight conditions typically have cambers of among[0.08c,0.105c],with the positions of maximum camber occurring among[0.35c,0.5c]of the chord length,and the leading-edge radiuses of these airfoils primarily cluster among[0.008c,0.025c]
基金support from the “Joint International Laboratory on Environmental and Energy Frontier Materials”“Innovation Research Team of High-Level Local Universities in Shanghai”support from the National Natural Science Foundation of China (22209103)
文摘Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.